﻿ 基于数字信号处理器的船用异步电机矢量控制方法
 舰船科学技术  2022, Vol. 44 Issue (18): 147-150    DOI: 10.3404/j.issn.1672-7649.2022.18.030 PDF

1. 湖南省电子学会，湖南 长沙 410200;
2. 湖南信息职业技术学院，湖南 长沙 410200

Vector control method of marine asynchronous motor based on digital signal processor
LEI Dao-zhong1,2
1. Hunan Institute of Electronics, Changsha 410200, China;
2. Hunan College of Information, Changsha 410200, China
Abstract: The vector control method of Marine asynchronous motor based on digital signal processor is studied to improve the control performance of marine asynchronous motor. TMS320F28335 single chip microcomputer is selected as the digital signal processor for vector control of marine asynchronous motor to deal with all the digital and algorithm of vector control. Set value and the corresponding rotational speed rotor flux values as vector control input values, according to estimate speed and the rotational speed value of the difference, for the next instruction cycle electromagnetic torque input values, electromagnetic torque input value and the value is set to the difference between the electromagnetic torque feedback input value of the torque controller and obtain torque component of the voltage vector instruction value. The digital signal processor is used to run PI control algorithm to complete speed estimation, torque regulation and flux regulation, and realize the closed-loop control of magnetic current current, speed and torque of marine asynchronous motor. The experimental results show that the method can control the stator current, torque and speed of the marine asynchronous motor efficiently by using digital signal processor, and the stator current can be stabilized within 0.5 s when the marine asynchronous motor is loaded.
Key words: digital signal     processor     marine asynchronous motor     vector control method     pi control algorithm     electromagnetic torque
0 引　言

1 船用异步电机矢量控制方法 1.1 船用异步电机数学模型

 ${\psi _{rm}} = {\psi _{rd}} = {\psi _r} ，$ (1)
 ${\psi _{rt}} = {\psi _{rq}} = 0 ，$ (2)
 $\frac{{{\rm{d}}{\psi _{rt}}}}{{{\rm{d}}t}} = \frac{{{\rm{d}}{\psi _{rq}}}}{{{\rm{d}}t}} = 0。$ (3)

 $\left\{ {\begin{array}{*{20}{c}} {\dfrac{{{\rm{d}}{\omega _r}}}{{{\rm{d}}t}} = \dfrac{{n_p^2{L_m}}}{{J{L_r}}}{i_{st}}{\psi _r} - \dfrac{{{n_p}}}{J}{L_m}{T_L}} ，\\ {\dfrac{{{\rm{d}}{\psi _r}}}{{{\rm{d}}t}} = - \dfrac{{{\psi _r}}}{{{T_r}}} + \dfrac{{{i_{sm}}{L_m}}}{{{T_r}}}} ，\\ {\dfrac{{{\rm{d}}{\psi _{rt}}}}{{{\rm{d}}t}} = {\omega _r}{\psi _r} - {\omega _1}{\psi _r} + \dfrac{{{L_m}}}{{{T_r}}}{i_{st}} = 0} ，\\ {{T_e} = \dfrac{{{n_p}}}{{{L_r}{T_r}}}{i_{st}}{\psi _r}{L_m}} 。\end{array}} \right.$ (4)

 ${\psi _r} = \frac{{{i_{sm}}{L_m}}}{{{T_r}p{n_p} + 1}}，$ (5)

 ${\omega _1} = {\omega _r} + \frac{{{i_{st}}{L_m}}}{{{T_r}{\psi _r}{n_p}}}，$ (6)

 ${T_e} = \frac{{{n_p}{L_m}{i_{st}}{\psi _r}}}{{{L_r}p}}。$ (7)

1.2 数字信号处理器的矢量控制方法 1.2.1 数字信号处理器设计

1.2.2 数字信号处理器的异步电机矢量控制

 图 1 船用异步电机矢量控制方法 Fig. 1 Vector control method of marine asynchronous motor
2 实例分析

 图 2 解耦后定子磁链变化 Fig. 2 Stator flux changes after decoupling

 图 3 实际转速与估算转速对比 Fig. 3 Comparison between actual and estimated rotational speeds

 图 4 定子电流控制结果 Fig. 4 Stator current control results

 图 5 转矩控制结果 Fig. 5 Torque control results

 图 6 转速控制结果 Fig. 6 Speed control results
3 结　语

 [1] 罗如学, 尤妙娜, 林继灿, 等. 粒子群PI与滑模观测器的异步电机矢量控制[J]. 控制工程, 2020, 27(5): 884-890. [2] 曾桂珍, 曾润忠, 张广远, 等. 基于数字信号处理器实现特定消谐脉宽调制控制技术的研究[J]. 城市轨道交通研究, 2021, 24(1): 31-36. DOI:10.16037/j.1007-869x.2021.01.007 [3] 姜一帆, 张均东, 伏俊鹏, 等. 基于单神经元PI的船用异步电机无速度传感器仿真[J]. 船舶工程, 2020, 42(3): 85-92. DOI:10.13788/j.cnki.cbgc.2020.03.15 [4] 杨城健, 李白雅, 王锦涛, 等. 基于分数阶滑模转速控制器的永磁同步电机矢量控制[J]. 湖南科技大学学报(自然科学版), 2022, 37(1): 51-59. DOI:10.13582/j.cnki.1672-9102.2022.01.008 [5] 祝新阳, 曾国辉, 黄勃, 等. 改进滑模观测器的永磁同步电机矢量控制[J]. 信息与控制, 2020, 49(6): 708-713+721. [6] 胡冰, 张利军, 崔晓光, 等. 基于改进电压模型的感应电机无速度传感器矢量控制[J]. 微特电机, 2020, 48(2): 34-37+41. DOI:10.3969/j.issn.1004-7018.2020.02.009 [7] 张明德, 沈智军, 谢乐, 等. 船用螺旋桨铣削参数优化和刀轴矢量控制方法研究[J]. 机械科学与技术, 2022, 41(4): 580-586. DOI:10.13433/j.cnki.1003-8728.20200401