﻿ 船舶柴油机废气发电效率优化
 舰船科学技术  2022, Vol. 44 Issue (18): 143-146    DOI: 10.3404/j.issn.1672-7649.2022.18.029 PDF

Optimization of marine diesel engine exhaust gas power generation efficiency
XUE Hai-long
Jiangsu Shipping College, Nantong 226001, China
Abstract: The exhaust emission model of marine diesel engine is studied, and the calculation method of diesel engine exhaust mass flow is emphatically analyzed. At the same time, the exhaust emission prediction model of marine diesel engine is constructed; The treatment method of exhaust gas from marine diesel engine is put forward, and the relationship between the effective output power of marine turbine and the compression power of marine compressor is summarized; The power generation technology of marine power turbine is discussed, the mathematical model of power turbine is derived, and the optimization of power generation efficiency of marine power turbine is simulated.
Key words: ship     diesel engine     exhaust gas     electricity generation     efficiency optimization
0 引　言

1 船舶柴油机废气排放模型 1.1 柴油机废气质量流量计算

 $\begin{split}{q_{mew}} = &{q_{mf}}\left( \left( \dfrac{\dfrac{{1.4 \times \left( {{w_{BET}} \cdot {w_{BET}}} \right)}}{{\left( {\dfrac{{1.4 \times {w_{BET}}}}{{{f_c}}} + \left( {{w_{ALF}} \times 0.08936} \right) - 1} \right) \times \dfrac{1}{{1.293}} + {f_{fd}}}}}{{{f_c} \times {f_c}}} +\right.\right.\\ &\left.\left.\left( {{w_{ALF}} \times 0.08936} \right) - 1 \right) \times \left( {1 + \frac{{{H_a}}}{{1000}}} \right) + 1 \right)\text{。}\\[-15pt] \end{split}$ (1)

 ${f_{fd}} = - 0.0556 {w_{ALF}} + 0.008 {w_{DEL}} + 0.007 {w_{EPS}}\text{，}$ (2)

 ${f_c} = \left( {{c_{co2d}} - {c_{co2ad}}} \right) \cdot 0.544 + \frac{{{c_{COd}}}}{{18522}} + \frac{{{c_{HCw}}}}{{17355}}\text{。}$ (3)

 ${k_{hd}} = \frac{1}{{1 - 0.0182 \times \left( {{H_a} - 10.71} \right) + 0.0045 \times \left( {{T_a} - 298} \right)}}\text{，}$ (4)

 $\begin{split}& {{k_{hd}} = }\\ &{\dfrac{1}{{1 - 0.012 \times \left( {H - 10.71} \right) - 0.00275 \times \left( {{T_a} - 298} \right) + 0.00285 \times \left( {{T_{SC}} - {T_{SC{Re} f}}} \right)}}\text{。}} \end{split}$ (5)

 $H = 6.22 \times {p_{sc}} \times 100/\left( {{p_c} - {p_{sc}}} \right)\text{。}$ (6)

 ${c_w} = {k_w} \cdot {c_d}\text{。}$ (7)

 $gas = \frac{{\displaystyle\sum\nolimits_{i = 1}^{i = n} {\left( {{q_{mgasi}} \cdot {W_{Fi}}} \right)} }}{{\displaystyle\sum\nolimits_{j = 1}^{j = n} {\left( {{P_j} \cdot {W_{Fi}}} \right)} }}\text{。}$ (8)

1.2 柴油机废气排放预测模型构建

 图 1 船舶柴油机转速、功率以及废气排放值三者之间的关系 Fig. 1 The relationship among rotational speed, power and exhaust emission value of marine diesel engine
 ${y_i} = \left( {{y_{\max }} - {y_{\min }}} \right) \times \frac{{{x_i} - {x_{\min }}}}{{{x_{\max }} - {x_{\min }}}} + {y_{\min }}\text{，}$ (9)

 ${y_i} = 2 \times \frac{{{x_i} - {x_{\min }}}}{{{x_{\max }} - {x_{\min }}}} - 1\text{。}$ (10)
2 船舶柴油机废气排放处理技术

 图 2 柴油机废气排放处理系统 Fig. 2 Diesel engine exhaust emission treatment system

 ${N_t} = {W_t}{q_t}{\eta _{tc}} = {W_c}{q_c}\text{。}$ (11)
3 船舶动力涡轮发电技术 3.1 动力涡轮数学建模

 ${T_{pt2s}} = {T_{pt1}}{\left( {\frac{{{P_{pt2}}}}{{{P_{pt1}}}}} \right)^{\frac{{k - 1}}{k}}}\text{。}$ (12)

 ${h_{pt2s}} = {T_{pt2s}} \times {c_p}\text{，}$ (13)
 ${h_{pt2}} = {h_{pt1}} - {\eta _{pt}}\left( {{h_{pt1}} - {h_{pt2s}}} \right)\text{，}$ (14)
 ${P_{pt}} = {\eta _{pt}}{m_{pt}}\left( {{h_{pt1}} - {h_{pt2}}} \right)\text{。}$ (15)

 图 3 阀门开度和动力涡轮功率之间的关系 Fig. 3 Relationship between valve opening and power turbine power
3.2 动力涡轮发电效率优化仿真

 图 4 废气阀门打开后涡轮流量变化 Fig. 4 Turbine flow change after exhaust valve is opened

 图 5 废气阀门关闭后涡轮流量变化 Fig. 5 Turbine flow change after exhaust valve is closed
4 结　语

 [1] 普聪远. 船舶柴油机废气余热发电效率优化系统[J]. 舰船科学技术, 2020(42): 82-84. PU Cong-yuan. Efficiency optimization system of waste heat power generation of marine diesel engine[J]. Ship Science and Technology, 2020(42): 82-84. [2] 刘少斌, 何明键, 任亚涛, 等. 船舶柴油机尾气热电装置热分析及结构设计[J]. 节能技术, 2022(40): 3-10. LIU Shao-bin, HE Ming-jian, REN Ya-tao, et al. Thermal Analysis and Optimal Design of Marine Diesel Engine Exhaust Heat Recovery Device[J]. Energy Conservation Technology, 2022(40): 3-10. DOI:10.3969/j.issn.1002-6339.2022.01.001 [3] 李晓宁, 吕唐辉, 王铭昊, 等. 船舶柴油机余热利用系统性能优化[J]. 广东海洋大学学报, 2021(41): 123-130. LI Xiao-ning, LV Tang-hui, WANG Ming-hao, et al. performance optimization of waste heat utilization system of marine diesel engine[J]. Journal of Guangdong Ocean University, 2021(41): 123-130. DOI:10.3969/j.issn.1673-9159.2021.02.017 [4] 宋杨, 彭杰伟, 等. 船用柴油机余热发电透平内部流场分析[J]. 船舶与海洋工程, 2019(35): 23−28+42. SONG Yang, PENG Jie-wei. Analysis of internal flow in waste heat recovery turbine for marine diesel engine[J]. Naval Architecture and Ocean Engineering, 2019(35): 23−28 +42. [5] 卢丹凤, 张佳顺, 商丽艳, 等. 基于闪蒸循环联合发电系统的多目标优化分析[J]. 工程热物理学报, 2022(43): 1163-1173. LU Dan-feng, ZHANG Jia-shun, SHANG Li-yan, et al. Multi-objective Optimization Analysis Based on Flash Cycle Combined Power Generation System[J]. Journal of Engineering Thermophysics, 2022(43): 1163-1173. [6] 高泽宇, 张鹏, 曹乐乐, 等. 基于自适应阈值的船舶柴油机状态监控[J]. 船舶工程, 2021(43): 172-177. GAO Ze-yu, ZHANG Peng, CAO Le-le, et al. Condition Monitoring of Marine Diesel Engine Based on Adaptive Threshold[J]. Ship Engineering, 2021(43): 172-177. [7] 胡长庆, 师学峰, 张玉柱, 等. 烧结余热回收发电关键技术[J]. 钢铁, 2011(46): 86-91. HU Chang-qing, SHI Xue-feng, ZHANG Yu-zhu, et al. Key Technologies of Sintering Residual Heat Recovery for Power Generation[J]. Iron and Steel, 2011(46): 86-91. DOI:10.13228/j.boyuan.issn0449-749x.2011.01.012 [8] 褚晓广, 张承慧, 李珂, 等. 涡旋膨胀机发电系统效率优化控制策略[J]. 电工技术学报, 2012(27): 25-31. CHU Xiao-guang, ZHANG Cheng-hui, LI Ke, et al. Efficiency Optimization Control Strategy of Scroll Expander Generator System[J]. Transactions of China Electrotechnical Society, 2012(27): 25-31. DOI:10.19595/j.cnki.1000-6753.tces.2012.06.005