﻿ 基于联合仿真的轴系动态校中方法
 舰船科学技术  2022, Vol. 44 Issue (18): 126-129    DOI: 10.3404/j.issn.1672-7649.2022.18.025 PDF

1. 武汉理工大学 交通与物流工程学院，湖北 武汉 430063;
2. 中国舰船研究设计中心，湖北 武汉 430064

Research on shafting dynamic alignment method based on joint simulation
ZHU Jie-feng1, JIN Yong1, YANG Ya-ting2
1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China;
2. China Ship Development and Design Center, Wuhan 430064, China
Abstract: In order to solve the problem of limitations in the study of single construction of mathematical model of three-moment method and shafting alignment of multi-body dynamics analysis. A solution based on Matlab and SimulationX co-simulation was proposed. Firstly, the operation mechanism of Matlab and SimulationX joint simulation is introduced, and the technical feasibility of two kinds of simulation software to realize collaborative simulation is analyzed. Then based on multi-body dynamics and bearing dynamic characteristics, the whole shaft system is considered to realize dynamic alignment. Under the calculation of this method, the results conform to the shafting alignment specification and the load of each similar bearing is more balanced. The co-simulation method not only provides a method for the study of shafting dynamic alignment, but also provides a solution for other multi-physics coupling problems.
Key words: alignment of shafting     co-simulation     Matlab     SimulationX
0 引　言

1 基于联合仿真的轴系校中分析

 图 1 轴系静态校中技术方案图 Fig. 1 Technical scheme of shafting static alignment

 图 2 轴系动态校中技术方案图 Fig. 2 Technical scheme diagram of shafting alignment

1）构建推进轴系动态校中模型，通过SimulationX平台的建模工具将包括轴径、坐标、弹模、刚度、阻尼等在内的轴系几何、工况参数进行录入；

2）Matlab端将轴系参数处理后，调用SimulationX端进行轴系校中计算，并将轴系支反力等结果回传；

3）Matlab端将SimulationX端的轴系校中结果传递给Matlab的轴承计算模块，进行轴承摩擦功耗、动刚度、阻尼系数等计算；

4）Matlab端回传动特性参数至SimulationX端轴系校中模块，开始进行动态校中，并获取最终的动特性及摩擦功耗。

2 仿真分析 2.1 轴系模型

 图 3 试验台轴系示意图 Fig. 3 Shafting diagram of test bench

2.2 轴系静态校中

2.3 轴承计算

 图 4 径向轴承性能计算流程图 Fig. 4 Radial bearing performance calculation flow chart

2.4 轴系动态校中

1）相邻2次计算中各轴承反力的差异在许可范围内；

2）相邻2次计算中轴心位置的差值在许可范围内。

 图 5 轴系各支撑位置迭代收敛情况 Fig. 5 Iterative convergence of support positions of shafting

3 结　论

 [1] 张居凤, 汪玉, 方志刚, 等. 舰船动力系统配置方案可行性分析方法[J]. 舰船科学技术, 2011, 33(9): 60-63. DOI:10.3404/j.issn.1672-7649.2011.09.013 [2] 杨翠平. 舰船轴系动态校中三弯矩方程的应用[J]. 舰船科学技术, 2020, 42(22): 85-87. [3] 赵同宾, 邱爱华, 祁亮, 等. 海洋科学考察船动力系统发展现状及趋势[J]. 舰船科学技术, 2014, 36(S1): 52-55. [4] 魏海军, 王宏志. 船舶轴系校中多支承问题的研究[J]. 船舶力学, 2001(1): 49-54. DOI:10.3969/j.issn.1007-7294.2001.01.007 [5] 周瑞平, 张升平, 杨建国. 三弯矩方程的改进及在船舶轴系动态校中中的应用[J]. 船舶工程, 2003(1): 40-43. DOI:10.3969/j.issn.1000-6982.2003.01.011 [6] 耿厚才. 船舶轴系的动态校中计算[J]. 中国造船, 2006(3): 51-56. DOI:10.3969/j.issn.1000-4882.2006.03.007 [7] SHI L, XUE D, SONG X. Research on shafting alignment considering ship hull deformations[J]. Marine Structures, 2010, 23(1): 103-114. DOI:10.1016/j.marstruc.2010.01.003 [8] 尹红升, 刘金林, 施亮, 等. 船舶柔性推进轴系校中特性研究[J]. 推进技术, 2021, 1-9. DOI:10.13675/j.cnki.tjjs.200644 [9] YANG Y, MA J, TANG W, et al. Shafting alignment based on hydrodynamics simulation under larger rudder corner conditions[J]. Journal of Shanghai Jiaotong University (Science), 2012, 17(4): 427-435. DOI:10.1007/s12204-012-1263-3 [10] YANG Y, TANG W, MA J. Analysis of shafting alignment for container vessels based on improved transition matrix method[J]. Procedia Engineering, 2011, 15: 5373-5377. DOI:10.1016/j.proeng.2011.08.996 [11] LEE J, JEONG B, AN T. Investigation on effective support point of single stern tube bearing for marine propulsion shaft alignment[J]. Marine Structures, 2019, 64: 1-17. DOI:10.1016/j.marstruc.2018.10.010 [12] 杜志强. 仿真技术在汽车研发中的应用及发展趋势[J]. 上海汽车, 2005(5): 36-39. DOI:10.3969/j.issn.1007-4554.2005.05.012 [13] 李剑峰. 机电系统联合仿真与集成优化案例解析[M]. 北京: 电子工业出版社, 2010: 251.