﻿ 船舶被动式超低能耗上层建筑的设计构思
 舰船科学技术  2022, Vol. 44 Issue (18): 45-50    DOI: 10.3404/j.issn.1672-7649.2022.18.010 PDF

Design conception of passive ultra-low power accommodation area in ship
XU Qian, TIAN Zheng-jun, JI Chun-zheng, ZHAO Zi-bing
China Merchants Cruise Research Institute (Shanghai) Co., Ltd., Shanghai 200041, China
Abstract: For the accommodation area in ship adopting the passive ultra-low power design,the electric energy consumption can be greatly reduced through passive energy conservation technology, active energy conservation technology and use of waste heat energy from main engine. The design concept of passive ultra-low power is adopted in one ro-pax restaurant . Through calculation and analysis, the cooling load of the maintenance structure is reduced by 68.5%, the heat load is reduced by 60.7%, the design air conditioning load is reduced by 30% in summer and 54% in winter, and the power consumption of the air conditioning and ventilation system is reduced by 82%.
Key words: ship     passive ultra-low power     energy conservation     accommodation area
0 引　言

1 被动式超低能耗上层建筑

2 被动式节能

2.1 围护结构冷热负荷

 $q_1=\Delta T{\cdot}Kv{\cdot}Av+\Delta T{\cdot}Kg{\cdot}Ag。$ (1)

 $q_2=Gs{\cdot}Ag+\Delta Tr{\cdot}Kv{\cdot}Av 。$ (2)

2.2 被动式节能技术 2.2.1 玻璃

2.2.2 遮阳

 $Gs=[G_1{\cdot}\eta +G_2{\cdot}（1-\eta）]{\cdot}Xz{\cdot}g 。$ (3)

2.2.3 绝缘

 $Kv=\lambda/d。$ (4)

 图 1 舱壁保温绝缘包覆示意图 Fig. 1 diagram of insulation on bulkhead
2.3 实船被动式节能的计算分析

3 主动式节能

3.1 空调负荷

 $Ci=Co+Ca{\cdot}Qo/Q 。$ (5)

 $q=Q/3600{\cdot}(T_1-T_2){\cdot}\rho{\cdot}c 。$ (6)

 $W=Q/3600{\cdot}\rho{\cdot}[（h_0-h_2）-（h_0-h_1）{\cdot}\eta_1]。$ (7)

3.2 主动式节能技术 3.2.1 新风热回收

 图 2 热转轮的示意图 Fig. 2 diagram of recovery wheel
3.2.2 变风量

 $N_1=Q_1/3.6{\cdot}P_1{\cdot}\rho/\eta _1。$ (8)

3.2.3 变水量

 图 3 变水量空调水系统 Fig. 3 Variable volume A/C water system
 $N_2=Q_2/36{\cdot}P_2{\cdot}\rho/\eta _2 。$ (9)

3.3 实船主动式节能的计算分析

 图 4 超低能耗空调通风系统 Fig. 4 Ultra-low power HVAC system

4 主机废热的利用

4.1 吸收式冷水机

 $E=W_0/Q_0。$ (10)

 图 5 溴化锂冷水机组的原理图 Fig. 5 Diagram of LiBr chiller
4.2 废热利用

 图 6 废热利用的空调水系统 Fig. 6 A/C water system with waste heat utilization
4.3 实船主机废能利用的计算分析

5 结　语

 [1] 滕伟, 张少凡, 张建忠, 等. 夏热冬冷地区被动式超低能耗公共建筑暖通空调设计[J]. 暖通空调, 2019, 49(09): 54-58. [2] 李德英. 建筑节能技术[M]. 北京: 机械工业出版社, 2017. [3] 彭梦月. 被动式低能耗建筑围护结构关键技术与材料应用[J]. 新建筑材料, 2015(01): 77-82. [4] 陆耀庆. 实用供热空调设计手册[M]. 北京: 中国建筑工业出版社, 2008. [5] 陈强, 王崇杰, 李洁, 等. 寒冷地区被动式超低能耗建筑关键技术研究[J]. 山东建筑大学学报, 2016(1): 19-26. DOI:10.3969/j.issn.1673-7644.2016.01.004 [6] Vetrotech Saint-Gobain Marine. Glass possibilities for Passenger Vessels[EB/OL].https://www.vetrotech.com/marine/marine-sectors, 2021-11-3. [7] ISO 7547: 2002(E). Ships and marine technology-Air conditioning and ventilation of accommodation spaces-Design conditions and basis of calculations[S]. [8] 戎向阳, 刘希臣. 交通建筑中新型冠状病毒的空气传播风险与室内环境控制策略[J]. 暖通空 调, 2020(6): 12-18. [9] 邬佳佳, 刘东. 上海市某商业建筑排风热回收系统节能性分析[J]. 建筑热能通风空调, 2021(2): 78-81. [10] 黄伟稀, 陈文华, 何涛, 等. 船用变风量空调系统调控技术研究综述[J]. 舰船科学技术, 2021, 43(17): 1-6. [11] 徐谦等. 溴化锂吸收式冷水机在客船上的运用[J]. 船舶工程, 2021(S1): 278-281. DOI:10.13788/j.cnki.cbgc.2021.S1.063 [12] KOCAK G, DURMUSOGLU Y . Energy efficiency analysis of a ship s central cooling system using variable speed pump[J]. Journal of Marine Engineering & Technology, 2018, 17(1): 43-51.