﻿ 长管路均压移水系统水力特性数值分析与试验研究
 舰船科学技术  2022, Vol. 44 Issue (18): 26-30    DOI: 10.3404/j.issn.1672-7649.2022.18.006 PDF

Numerical investigation and experiments on hydraulic characteristics of long pipeline pressure-balancing water conveying system
ZHANG Zheng, XIAO Long-zhou, YU Jian, CAI Biao-hua, ZOU Yu-jing
Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Abstract: The water conveying system is an important system for ships, through conveyinging water between two water tanks to maintain stability. Because the water conveying system has the characteristics of long pipelines and large flow, negative pressure is inevitable. Connecting two water tank vents is used to form pressure-balancing water conveying system. This paper uses simulation to study the hydraulic characteristics of the pressure-balancing water conveying system, and the simulated results confirms well with experimental data. With the increasing initial pressure, outlet pressure of the tank 1, inlet pressure of the tank 2 and inlet pressure of the pump increase, which restrain the cavitation while taking the same time to balance. With the increasing air circuit pipe diameter, under pressure-balancing water conveying operation condition ${P_2}$ ${P_1}$ decreases, while taking shorter time to balance.
Key words: ship     hydraulic characteristics     pressure-balancing water conveying system
0 引　言

1 均压移水系统建模、仿真与试验 1.1 均压移水系统基本原理

 图 1 均压移水系统原理图 Fig. 1 Schematic diagram of pressure-balancing water conveying system

1.2 均压移水系统运行工况

 图 2 均压移水工况 Fig. 2 Pressure-balancing water conveying operation condition

 图 3 均压平衡工况 Fig. 3 Pressure-balancing air proportion operation condition
1.3 均压移水系统仿真建模 1.3.1 Flowmaster仿真模型

 图 4 均压移水系统Flowmaster模型 Fig. 4 Flowmaster model of pressure-balancing water conveying system

1.4 均压移水系统均压移水试验

2 结果与讨论 2.1 仿真结果与试验验证

 图 5 均压平衡工况仿真与实验结果对比（P0 = 0.25 MPa） Fig. 5 Comparison of simulation and experimental results under pressure-balancing air proportion operation condition （P0 = 0.25 MPa）
2.2 均压移水系统水力特性分析 2.2.1 均压移水工况下管路系统压力分布

 图 6 管路系统不同位置压力分布（均压移水工况，P0 = 0.25 MPa） Fig. 6 System pressure distribution （pressure-balancing water conveying operation condition, P0 = 0.25 MPa）

2.2.2 均压平衡工况压力变化

 图 7 均压平衡工况压力变化（P0 = 0.25 MPa） Fig. 7 Pressure change under pressure-balancing air proportion operation condition (P0 = 0.25 MPa)
2.3 均压移水系统不同初始压力仿真

 图 8 不同P0时均压平衡工况P1和P2 Fig. 8 Pressure-balancing air proportion operation condition P1 and P2 under different P0

 图 9 不同 ${P_0}$ 下泵入口压力 Fig. 9 Pump inlet pressure under different ${P_0}$

2.4 均压移水系统气回路不同管径仿真

 图 10 不同管径下气回路均压平衡工况P1和P2(P0 = 0.25 MPa) Fig. 10 Pressure-balancing air proportion operation condition P1 and P2 under different pipe diameters(P0 = 0.25 MPa)

3 结　语

1）关阀后系统进入均压平衡状态，由于水回路断开气回路保持连接， ${P_1}$ ${P_2}$ 会逐步趋于一致， ${P_3}$ 会在停泵后下降至与 ${P_1}$ 相同大小，并最终达到压力均衡。

2）随着系统初始压力 ${P_0}$ 的增大， ${P_1}$ ${P_2}$ 和泵入口处压力增大，有助于抑制泵的气蚀，但初始压力 ${P_0}$ 的变化不会影响系统达到压力均衡的时间。

3）随着系统气回路管径的增大，关阀前 ${P_2}$ 减小 ${P_1}$ 增大，且 ${P_2}$ ${P_1}$ 减小，在关阀后系统到达压力均衡的时间减小。

 [1] 贲成华. 船舶水箱—鳍减摇和抗倾系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2006. [2] 谢光能. 减振降噪技术在高速船舶上的应用[J]. 广东造船, 2019, 38(2): 43-45+50. DOI:10.3969/j.issn.2095-6622.2019.02.012 [3] 潘志伟. 浅谈船舶压载水自动调平系统的应用和管理[J]. 航海, 2016(2): 52-55. [4] 马士虎, 刘增荣. 潜艇均衡系统仿真研究初探[J]. 舰船科学技术, 2002(2): 42-44. [5] 朱靖宇. 潜艇悬停及均衡试验装置控制系统的研制[D]. 武汉: 华中科技大学, 2017. [6] 蔡标华. 舰船首尾移水系统水锤特性仿真与试验[J]. 舰船科学技术, 2011, 33(9): 52-55. DOI:10.3404/j.issn.1672-7649.2011.09.011 [7] 李斌, 蔡标华, 俞健, 等. 船舶泵阀移水系统水锤抑制方法研究[J]. 舰船科学技术, 2017, 39(1): 96-99+103. DOI:10.3404/j.issn.1672-7619.2017.01.019 [8] 彭利坤, 张阳阳, 邢继峰. 舰船纵倾均衡水箱加气调水时管路冲击特性研究[J]. 液压与气动, 2013(8): 12-15.