﻿ 主动式截流器流体动力性能与减摇效果研究
 舰船科学技术  2022, Vol. 44 Issue (18): 6-10    DOI: 10.3404/j.issn.1672-7649.2022.18.002 PDF

Study on hydrodynamic performance and anti-roll effect of active interceptor
WANG Xi-jian, ZENG Ke, ZHANG Long-hui, YU Lan, LI Yong-cheng
Key Laboratory of Hydrodynamics, China Ship Scientific Research Center, Wuxi 214082, China
Abstract: This paper takes a trimaran as the research object to study the hydrodynamic performance and anti-pitching effect of an active interceptor. First, the CFD numerical technology is used to study the hydrodynamic performance of the interceptor. The numerical calculation results show that the existence of the interceptor causes a sharp increase in the fluid pressure, generating an upward fluid force at the ship stern, which can generate a larger pitching moment to restrain bow lifting of the ship. Then, by designing a set of interceptor devices, the top wave regular model test of trimaran is carried out. In the experiment, the active control and non-control methods of interceptor is adopted. Finally, the pitch motion response function of trimaran with interceptor is obtained. The test results show that when the ratio of wave length to ship length is greater than 1.0, the active interceptor has the anti-pitching effect, and the maximum anti-rolling effect can reach 19.23%. The research results of this paper can provide technical support for the application of interceptors on real ships.
Key words: interceptor     hydrodynamic performance     model test
0 引　言

1 数值计算方法 1.1 控制方程

 $\frac{\partial} {{\partial} {x_i}}(\rho {u_i}) = 0 ，$ (1)
 $\frac{{\partial (\rho {u_i})}}{{\partial t}} + \frac{\partial }{{\partial {x_i}}}(\rho {u_i}{u_j}) = - \frac{{\partial p}}{{\partial {x_i}}} + \frac{\partial }{{{x_j}}}\left(\mu \frac{{\partial {u_i}}}{{\partial {x_j}}} - \rho \overline {u_i'u_j'} \right) + {S_i}。$ (2)

1.2 湍流模型

 $\frac{\partial }{{\partial t}}(\rho k) + \frac{\partial }{{\partial {x_i}}}(\rho k{u_i}) = \frac{\partial }{{\partial {x_i}}}\left(\left(\mu + \frac{{{\mu _t}}}{{{\sigma _k}}}\right)\frac{{\partial k}}{{\partial {x_j}}}\right) + {G_k} - \rho \varepsilon。$ (3)

 $\begin{split}\frac{\partial }{{\partial t}}(\rho \varepsilon ) + \frac{\partial }{{\partial {x_i}}}(\rho \varepsilon {u_i}) =& \frac{\partial }{{\partial {x_i}}}\left(\left(\mu + \frac{{{\mu _t}}}{{{\sigma _k}}}\right)\frac{{\partial \varepsilon }}{{\partial {x_j}}}\right) + \rho {C_1}E\varepsilon -\\ &\rho {C_2}\frac{{{\varepsilon _2}}}{{k + \sqrt {\nu \varepsilon } }}。\end{split}$ (4)
2 截流器流体动力性能研究 2.1 三体船及截流器构型

 图 1 三体船几何图 Fig. 1 Geometry figure of the trimaran

 图 2 截流器在三体船尾部的布置 Fig. 2 Interceptor arrangement at the stern of trimaran
2.2 截流器流体动力性能计算与分析

 图 3 三体船静水中航行尾部中纵剖面波形图 Fig. 3 Mid-longitudinal section waveform of trimaran stern sailing in still water

 图 4 三体船底部剖面划分图 Fig. 4 Section division of trimaran bottom

 图 5 不同截流器长度下船尾压力分布 Fig. 5 Pressure distribution under different interceptor length
3 主动式截流器减摇效果试验研究

3.1 截流器机构设计

 图 6 截流器机构方案安装示意图 Fig. 6 The installation diagram of interceptor mechanism scheme

 图 7 截流器示意图 Fig. 7 Schematic diagram of the interceptor
3.2 主动式截流器控制原理

 $\begin{split}\left\{ {J + {A_\infty }} \right\}\ddot \theta (t) + c\dot \theta (t) + k\theta (t) + &\int_0^t {r(t - \tau )\dot \theta (\tau )} {\rm{d}}\tau = \\& {f_{{\rm{wave}}}}(t) + {f_{{\rm{control}}}}(t) 。\end{split}$ (5)

 图 8 主动式截流器减摇原理图 Fig. 8 Stabilization schematic diagram of active interceptor

3.3 规则波中运动响应模型试验

 图 9 船模纵摇运动时间历程 Fig. 9 Time history of pitching motion of ship model

 图 10 顶浪规则波中纵摇运动响应曲线 Fig. 10 Curve of pitching motion response in top regular wave

4 结　语

1）由静水阻力数值计算结果可知，随着截流器长度的增加，总阻力值逐渐增加，加装截流器的三体船摩擦阻力变化较小，截流器的存在主要改变了压差阻力值，从而增加了船体总阻力；

2）由不同截流器长度下三体船底部截线上的压力值可知，当流经船体尾部下表面附近的水流受到截流器的阻流作用时，截流器前流体的压力将急剧增加，从而在船尾底部产生一个向上的流体作用升力；

3）当波长船长比大于1.0时，主动式截流器起到了减摇的效果，最大减摇效果可达19.23%。

 [1] 洪超, 陈莹霞. 船舶减摇技术现状及发展趋势[J]. 船舶工程, 2012(S2): 236-244. DOI:10.13788/j.cnki.cbgc.2012.s2.065 [2] ZANINOVIE A. Interceptors and its influence on the propulsion of a high speed boat[C]//Proceedings of NAV& HMSV, 1997. [3] MOLINI A, BRIZZOLARA S. Hydrodynamics of Interceptors: A fundamental study [R]. DINAV, 2005. [4] OOSSANEN P V, HEIMANN J, HENRICHS J, et al. Motor yacht hull form design for the displacement to semi-displacement speed range[C]//10th International Conference on Fast Sea Transportation. 2009. [5] SVERRE Steen. Experimental investigation of interceptor performance[C]//Ninth International Conference on Fast Sea Transportation FAST2007. 2007: 237-244 [6] MANSOORI M, FERNANDES A C. The interceptor hydro-dynamic analysis for controlling the porpoising instability in high speed crafts[J]. Applied Ocean Research, 2016, 57: 40-51. DOI:10.1016/j.apor.2016.02.006 [7] MANSOORI M, FERNANDES A C. Interceptor and trimtab combination to prevent interceptor's unfit effects[J]. Ocean Engineering, 2017, 134: 140-156. DOI:10.1016/j.oceaneng.2017.02.024 [8] 左文锵, 董文才, 夏翔, 等. 艉阻流板对穿浪双体船阻力影响的试验研究[J]. 中国舰船研究. 2006, 1(4): 52-55 . [9] 王文江, 宗智, 倪少玲, 等. 半滑行船阻流板阻力试验研究[J]. 中国舰船研究. 2012, 7(1): 18-22 . [10] 郭春雨, 宋科委, 龚杰, 等. 阻流板对深V型船阻力性能的影响[J]. 哈尔滨工程大学学报, 2018, 39(2): 215-221. [11] 夏敬停, 马雪泉, 李传庆, 等. 截流板式减摇系统在高速船上的应用[J]. 中国航海, 2019, 42(3): 71-75. [12] TSAI J F, HUANG J K. Study on the effect of interceptor on high speed craft[C]//Journal of the Society of Naval Architects and Marine Engineers, ROC, 2003.