﻿ 交互设计在舰船零部件智能制造中的应用
 舰船科学技术  2022, Vol. 44 Issue (16): 171-174    DOI: 10.3404/j.issn.1672-7649.2022.16.037 PDF

1. 青岛黄海学院，山东 青岛 266427;
2. 青岛黄海学院 智能制造学院，山东 青岛 266427

YANG Li1, CHEN Yong-wen1, CAO Ai-xia2
1. College of Art, Qingdao Huanghai University, Qingdao 266427, China;
2. College of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao 266427, China
Abstract: With the improvement of the technical level of the shipbuilding industry, the intelligent design and manufacturing of ship parts for developers has become a development trend. The so-called interactive design refers to the use of computer-aided design platform to achieve two-way design input and output in the design process of ship key components. The research direction of this paper is a ship part shape optimization design and 3D modeling technology based on ship image modeling elements. The design optimization of ship cabin components is realized by using corner detection, geometric space transformation and NURBS spline curve.
Key words: interaction design     intelligent manufacturing     3D modeling     corner detection
0 引　言

3D造型技术发展也体现了工业产品设计的历程，尤其是船舶工业领域，零部件的设计在初期只能利用计算机进行简单的线条绘图，随着3D软件的优化升级，船舶零部件设计从点到线，从面到体，经历了跨越式的发展，计算机辅助设计技术也提高了船舶工业领域产品的设计效率，提高了设计水平。

1 舰船零部件交互设计中3D造型元素研究

1）线框模型

2）曲面模型

 图 1 自由曲面模型的示意图 Fig. 1 Schematic diagram of free-form surface model

3）实体模型

4）特征模型

2 舰船零部件交互设计的关键环节 2.1 基于角点检测法的曲线特征优化

 $Z(u,v) = \sum\limits_{x,y} w (x,y){[I(x + u,y + v) - I(x,y)]^2} \text{。}$

 $T(u,v) \approx \begin{array}{*{20}{l}} {\left[ {\begin{array}{*{20}{l}} u \\ v \end{array}} \right]}&{ \cdot \displaystyle\sum\limits_{xy} w (x,y)\left[ {\begin{array}{*{20}{c}} {I_x^2}&{{I_y}} \\ {{I_x}}&{I_y^2} \end{array}} \right]} \end{array} \text{。}$

 图 2 基于角点检测的特征曲线优化示意图 Fig. 2 Schematic diagram of feature curve optimization based on corner detection
2.2 零部件产品2D特征的几何空间变换

1）刚体变换

 $\left( {\begin{array}{*{20}{l}} {{x^\prime }} \\ {{y^\prime }} \end{array}} \right) = \left( {\begin{array}{*{20}{l}} {\cos \theta }&{\sin \theta } \\ { - \sin \theta }&{\cos \theta } \end{array}} \right)\left( {\begin{array}{*{20}{l}} x \\ y \end{array}} \right) + \left( {\begin{array}{*{20}{l}} {{\Delta _x}} \\ {{\Delta _y}} \end{array}} \right) \text{。}$

2）投影变换

 $\left( {\begin{array}{*{20}{l}} {{x_0}} \\ {{y_0}} \end{array}} \right) = M\left( {\begin{array}{*{20}{l}} x \\ y \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {{a_1}} \\ {{a_2}} \\ {{a_3}} \end{array}} \right) \text{。}$

2.3 基于NURBS样条曲线的船舶零部件交互设计

 图 3 船舶轮廓线测绘流程图原理 Fig. 3 Principle of flow chart for ship contour mapping

 $T\left( {{t_0},{t_1},\cdots ,{t_n}} \right) {t_i} < {t_{i + 1}} \text{，}$

 $\left\{ {\begin{array}{*{20}{l}} {{{{N}}_{i,0}}({{t}}) = \left\{ {\begin{array}{*{20}{l}} {1,{{{t}}_i} \leqslant {{t}} < {{{t}}_{i + 1}}}，\\ {0,{\rm{else}}} \end{array}} \right.}，\\ {{{{N}}_{i,p}}({{t}}) = \dfrac{{{{t}} - {{{t}}_i}}}{{{{{t}}_{i + p}} - {{{t}}_i}}}{{{N}}_{i,p - 1}}({{t}}) + \dfrac{{{{{t}}_{i + p + 1}}}}{{{{{t}}_{{{i}} + 1}}}}{{{N}}_{i + 1,p - 1}}(t)}，\\ {{\rm{else}}}。\end{array}} \right.$

 $\begin{gathered} p(u) = \displaystyle\sum\limits_{i = 0}^n {{d_i}} {R_{i,p}}(u)，\\ {R_{i,p}}(u) = \frac{{{\omega _i}{N_{i,p}}(u)}}{{\displaystyle\sum\limits_{j = 0}^n {{\omega _i}} {N_{i,p}}(u)}} 。\\ \end{gathered}$

 图 4 非均匀有理B样条空间曲线示意图 Fig. 4 Schematic diagram of non-uniform rational B-spline space curve

1）将船体外表面的曲面划分为首部、中体、尾部和底部等部分，获取初始的设计型线，定义初始设计型线的特征点为：

 ${V_{i,j}}\left( {i = 0,1,\cdots,m;j = 0,1,\cdots,n} \right) \text{。}$

2）建立特征点的方向矢量为：

 $\begin{gathered} F = \{ \underbrace {0,{t_{p + 1}}, \cdots ,{t_n},1}_{p + 1}\} ，\\ K = \{ \underbrace {0,{w_{q + 1}}, \cdots ,{w_n},1}_{q + 1}\} 。\\ \end{gathered}$

3）建立货舱轮廓曲线主尺寸型线方程如下：

 $\left\{ {\begin{array}{*{20}{c}} {x = \dfrac{L}{{{L_x}}}{x_0}}，\\ {y = \dfrac{B}{{{B_y}}}{y_0}}。\end{array}} \right.$

 $\delta \left( {x,y} \right) = \alpha \left( {1 - x} \right)\left( {1 - y} \right) \text{。}$

 $f\left( {x,y} \right) = \int\limits_s {\delta \left( {x,y} \right) = \int\limits_s^{} {\alpha \left( {1 - x} \right)\left( {1 - y} \right)} } = x\frac{{\alpha {C_o}}}{{1 - {C_o}}} \text{。}$

4）建立光顺曲面[4]如下：

 $S(F,K) = \sum\limits_{i = 0}^n {\sum\limits_{j = 0}^n {{N_{i,p}}(F)} } {N_{j,p}}(K){V_{i,j}} \text{。}$

 $q\left( t \right) = {q_0} + t{q_d} \text{。}$

 $d = \frac{{\left| {n\left( {F,K} \right) \cdot {q_d}} \right| \cdot \left( {{q_0} - S\left( {F,K} \right)} \right)}}{{\left\| {n\left( {F,K} \right) \cdot {q_d}} \right\|}} 。$

 图 5 船舶吃水线轮廓处特征曲线的交互设计示意图 Fig. 5 Schematic diagram of interactive design of characteristic curve at the outline of ship's waterline
3 结　语

 [1] 张鹏程, 严陈, 张轶, 等. 基于逆向工程的船舶螺旋桨数字化设计及数控加工技术探讨[J]. 机电工程技术, 2022, 51(5): 143-146. ZHANG Peng-cheng, YAN Chen, ZHANG Yi, et al. Discussion on digital design and NC machining technology of ship propeller based on reverse engineering[J]. Electromechanical Engineering Technology, 2022, 51(5): 143-146. [2] 褚福锋. 基于NURBS曲线与曲面光顺理论的船体设计与优化[J]. 舰船科学技术, 2022, 44(11): 27-30. CHU Fu-feng. Hull design and Optimization Based on NURBS curve and surface fairing theory[J]. Ship science and technology, 2022, 44(11): 27-30. [3] 马建庆, 谢康林, 仝晓文. 基于非均匀B样条的船体型线设计软件的研究与应用[J]. 计算机工程与应用, 2004, 40(23): 223-225. MA Jian-qing, XIE Kang-lin, TONG Xiao-wen. Research and application of ship shape line design software based on non-uniform B-spline[J]. Computer Engineering and Application, 2004, 40(23): 223-225. DOI:10.3321/j.issn:1002-8331.2004.23.068 [4] 王淑静. 船体型线设计系统Web技术和非均匀B样条应用研究[J]. 舰船科学技术, 2018, 40(8): 190-192. WANG Shu-jing. Research on Web technology of ship hull line design system and application of non-uniform B-spline[J]. Ship science and technology, 2018, 40(8): 190-192.