﻿ 基于大数据挖掘的测量船安全综合评估系统
 舰船科学技术  2022, Vol. 44 Issue (16): 167-170    DOI: 10.3404/j.issn.1672-7649.2022.16.036 PDF

Design of survey ship safety comprehensive evaluation system based on big data mining
YANG Shao-jie
Haojing College of Shaanxi University of Science and Technology, Xi′an 712046, China
Abstract: In order to ensure the safety of survey ships, a survey ship safety comprehensive evaluation system based on big data mining is designed. The safety integrated data acquisition and entry unit of the measuring ship uses the data acquisition module to collect the basic data of the measuring ship equipment and personnel information data, and the data entry module stores the collected data into the safety integrated database of the measuring ship. After preprocessing the data by cleaning and complementing, the comprehensive safety data processing unit of measuring ship adopts the R-type system clustering method in big data mining technology to obtain the typical evaluation indicators in the process of comprehensive safety evaluation of measuring ship, and constructs the comprehensive safety evaluation index system of measuring ship. On this basis, the comprehensive safety evaluation unit of the measuring ship adopts the comprehensive safety evaluation model of the measuring ship based on fuzzy hierarchy, obtains the safety evaluation results of the current measuring ship, and presents them to the user through the comprehensive safety evaluation result display unit of the measuring ship. The experimental results show that the evaluation results of the system have good reliability and can ensure the safety of the measuring ship.
Key words: big data mining     surveying vessel     safety assessment     data collection     evaluation indicators     fuzzy hierarchy
0 引　言

1 测量船安全综合评估系统 1.1 系统整体结构

 图 1 大数据挖掘的测量船安全综合评估系统结构 Fig. 1 Structure of survey ship safety comprehensive evaluation system based on big data mining

1.2 大数据挖掘的测量船安全综合评估指标体系

 $\left\{ \begin{gathered} E = {\left( {{E_{ij}}} \right)_{d \times d}}，\\ {E_{ij}} = \frac{{\displaystyle\sum\limits_{{{x}} = 1}^N {{e_{ij}}} }}{X}。\\ \end{gathered} \right.$ (1)

 $\overline {E_j^2} = \dfrac{{\displaystyle\sum {{{{e}}^2}} }}{{{g_j} - 1}}。$ (2)

M个新类内分别选取较大相关指数对应的指标作为类内的典型指标。由此构建由测量船安全、人为因素与安全数据信息3个一级指标所组成的测量船安全综合评估指标体系。

1.3 基于模糊层次的测量船安全综合评估模型

1）构建因素集

 $\left\{ \begin{gathered} U = \left\{ {{U_1},{U_2},{U_3}} \right\}，\\ {U_i} = \left\{ {{U_{i1}},{U_{i2}}, \cdots ,{U_{im}}} \right\}，\\ {U_{im}} = \left\{ {{U_{im1}},{U_{im2}}, \cdots ,{U_{imn}}} \right\} 。\\ \end{gathered} \right.$ (3)

2）构建权重集

3）构建评价集

4）构建评估矩阵

5）综合评估

 $C = W \circ R。$ (4)

2 实验结果与分析

 图 2 研究对象安全综合评估结果 Fig. 2 Comprehensive asseaament results of safety of research object
3 结　语

 [1] 李永刚, 李祥明, 吴云, 等. 面向服务的测量船测控服务总线系统[J]. 计算机工程与科学, 2020, 42(8): 1345-1351. LI Yong-gang, LI Xiang-ming, WU Yun, et al. A service-oriented TT&C service bus system of survey ship[J]. Computer Engineering and Science, 2020, 42(8): 1345-1351. DOI:10.3969/j.issn.1007-130X.2020.08.003 [2] 梁家健, 陈京普, 赵强, 等. 基于CFD的测量船附体综合优化设计[J]. 船舶工程, 2021, 43(12): 47-51+177. LIANG Jia-jian, CHEN Jing-pu, ZHAO Qiang, et al. Optimization design of a survey ship appendage based on CFD[J]. Ship Engineering, 2021, 43(12): 47-51+177. [3] 张树凯, 刘正江, 蔡垚, 等. 综合安全评估的研究进展及展望[J]. 哈尔滨工程大学学报, 2021, 42(1): 152-158. ZHANG Shu-kai, LIU Zheng-jiang, CAI Yao, et al. Research progress and future of formal safety assessment[J]. Journal of Harbin Engineering University, 2021, 42(1): 152-158. DOI:10.11990/jheu.201906037 [4] 李军, 刘杰, 杨梓辉. 基于三角模糊层次分析法的高原库区施工船舶安全预警系统的设计[J]. 上海海事大学学报, 2021, 42(1): 94-99+106. LI Jun, LIU Jie, YANG Zi-hui. Design of safety early warning system for construction ships in plateau reservoir area based on triangular fuzzy analytic hierarchy process[J]. Journal of Shanghai Maritime University, 2021, 42(1): 94-99+106. [5] 樊冰婕, 许开立, 徐晓虎, 等. 基于AHP-模糊综合评价集成法的氧枪系统综合安全评价[J]. 工业安全与环保, 2020, 46(6): 11-14. DOI:10.3969/j.issn.1001-425X.2020.06.003 [6] 许琦, 秦庭荣, 马国梁, 等. 液货船综合安全评估专家系统模型[J]. 上海海事大学学报, 2021, 42(2): 64-69. XU Qi, QIN Ting-rong, MA Guo-liang, et al. An expert system model for formal safety assessment of tankers[J]. Journal of Shanghai Maritime University, 2021, 42(2): 64-69. [7] 梁玉霞, 李全明, 覃璇, 等. 基于熵权-TOPSIS模型的企业安全文化评估系统设计[J]. 中国安全生产科学技术, 2020, 16(7): 163-168. LIANG Yu-xia, LI Quan-ming, QIN Xuan, et al. Design of assessment system for enterprise safety culture based on entropy-TOPSIS model[J]. Journal of Safety Science and Technology, 2020, 16(7): 163-168. DOI:10.11731/j.issn.1673-193x.2020.07.026 [8] 王超, 史文森, 郭正东, 等. 基于双轴旋转惯导的舰船航向误差动态评估方法[J]. 中国惯性技术学报, 2020, 28(4): 551-555. WANG Chao, SHI Wen-sen, GUO Zheng-dong, et al. Dynamic evaluation of the heading error of the ship based on two-axis rotation strapdown inertial navigation system[J]. Journal of Chinese Inertial Technology, 2020, 28(4): 551-555. [9] 曹民, 黄秀松, 董国祥, 等. 岸桥用集装箱船舶系泊装卸安全监测系统的仿真及实测[J]. 中国航海, 2021, 44(2): 90-96. CAO Min, HUANG Xiu-song, DONG Guo-xiang, et al. Simulation&field test of mooring and loading safety monitoring system for container ship used on quay cranes[J]. Navigation of China, 2021, 44(2): 90-96. DOI:10.3969/j.issn.1000-4653.2021.02.015 [10] 詹锦皓, 李维波, 李齐, 等. 基于比例伪时序算法的舰船电力风险评估系统[J]. 中国舰船研究, 2022, 17(1): 176-186. ZHAN Jin-hao, LI Wei-bo, LI Qi, et al. Ship power risk assessment system based on proportional pseudo time-series algorithm[J]. Chinese Journal of Ship Research, 2022, 17(1): 176-186. DOI:10.19693/j.issn.1673-3185.02285