﻿ 船用发动机消声器抗冲击性能测试
 舰船科学技术  2022, Vol. 44 Issue (16): 110-113    DOI: 10.3404/j.issn.1672-7649.2022.16.022 PDF

Impact resistance test of marine engine silencer
SUN Yue-qiu
Bohai Ship-building Vocational College, Huludao 125001, China
Abstract: In order to provide performance data for optimizing the impact resistance of engine muffler, the test method of impact resistance of marine engine muffler is studied. This method takes the composite muffler of a marine engine as the research object, and establishes the three-dimensional model of the marine engine muffler through Matlab software and pree modeling software. Then, by designing the impact simulation load application scheme of the composite muffler, the impact effect of different impact load application schemes is simulated by using the three-dimensional model of marine engine muffler, and the impact load value of the muffler is obtained by dynamic design and analysis method. The experimental results show that the larger the explosion direction angle and the closer the explosion distance, the higher the total stress value of the marine engine muffler. The closer to the impact position, the higher the stress is, and damage is easy to occur at this position. The impact yield value of marine engine silencer is in direct proportion to the current ambient temperature. When the ambient temperature is lower than 400 ℃, the yield value is lower than the yield limit value, and the impact resistance is good.
Key words: marine engine     silencer     impact resistance     3D model     load application scheme     Pree modeling software
0 引　言

1 材料与方法 1.1 消声器选取

 图 1 复合型船用发动机消音器 Fig. 1 Composite marine engine silencer
1.2 船用发动机消声器三维模型构建

1）建立船用发动机消声器数学模型。由于船用发动机消声器为圆柱形状，其表面是由三圆弧构成的[5]，且位置不同其曲线弯曲程度不同。但其切线上两边的圆弧为对称状态，通过建立圆弧对称曲线方程建立船用发动机消声器数学模型。

2）消声器轮廓生成。利用船用发动机消声器数学模型获取消声器所有曲线数值后，将其输入到Matlab软件内。利用该软件对消声器曲线数值进行拟合处理后，建立其轮廓曲线方程，获得消声器空间位置坐标点。将该坐标点连接后，生成消声器轮廓，然后将该轮廓导出并生成.ibl文件。

3）将消声器空间位置坐标点的.ibl文件导入到PreE建模软件内，利用代码读取.ibl文件后，对其进行微调处理。然后在PreE建模软件页面内点击插入、模型标准，选举则自文件后，点击完成，即可生成船用消声器三维模型，如图2所示。

 图 2 船用消声器三维模型 Fig. 2 Three dimensional model of marine muffler
1.3 消声器冲击模拟荷载施加方案设计

1.4 船用发动机消声器冲击应力计算及冲击输入谱设计

 $M_n^* = \sum\limits_{j = 1}^N {{\varphi _{jn}}} = {\kappa _n}L_n^h 。$ (1)

 ${r_n}(t) = r_n^{st}{G_n}(t) 。$ (2)

 $A = 196.2\times \left[ {(17.01 + \zeta )(5.44 + \zeta )} \right]/(2.72 + \zeta ) ，$ (3)
 $B=11.52\times(5.44+\zeta)/(2.72+\zeta)。$ (4)

2 试验分析

 图 3 方向角为0° Fig. 3 Direction angle is 0°

 图 4 方向角为45° Fig. 4 Direction angle is 45°

 图 5 方向角为90° Fig. 5 Direction angle is 90°

 图 6 不同冲击方向冲击响应云图 Fig. 6 Cloud diagram of impact response in different impact directions

 图 7 不同环境温度船用发动机消音器屈服数值 Fig. 7 Yield value of marine engine silencer at different ambient temperatures
3 结　语

 [1] 冯兆缘, 冯先忍, 周密, 等. 船用中速柴油机排气SCR净化消声器的联合仿真分析[J]. 船舶工程, 2019, 41(1): 79-82+109. FENG Zhao-yuan, FENG Xian-ren, ZHOU Mi, et al. Combined simulation analysis of scr purification muffler for marine medium-speed diesel engine exhaust[J]. Ship Engineering, 2019, 41(1): 79-82+109. DOI:10.13788/j.cnki.cbgc.2019.01.15 [2] 刘晨, 张文平, 曹贻鹏, 等. 船用柴油机涡轮增压器的进气消声器性能分析[J]. 内燃机学报, 2019, 37(4): 343-350. LIU Chen, ZHANG Wen-ping, CAO Yi-peng, et al. Analysis of marine diesel engine turbocharger intake silencer performance[J]. Transactions of CSICE, 2019, 37(4): 343-350. DOI:10.16236/j.cnki.nrjxb.201904045 [3] 郑光泽, 陈明孝, 欧康. 新型催化消声器CFD仿真分析[J]. 机械设计, 2020, 37(2): 76-81. ZHENG Guang-ze, CHEN Ming-xiao, OU Kang. CFD simulation analysis on a new catalytic muffler[J]. Journal of Machine Design, 2020, 37(2): 76-81. DOI:10.13841/j.cnki.jxsj.2020.02.010 [4] 王波, 邓兆祥, 杨明磊. 双模式消声器气流再生噪声试验与仿真[J]. 重庆大学学报, 2019, 42(12): 1-8. WANG Bo, DENG Zhao-xiang, YANG Ming-lei. Test and simulation of the flow regeneration noise of dual mode muffler[J]. Journal of Chongqing University(Natural Science Edition), 2019, 42(12): 1-8. DOI:10.11835/j.issn.1000-582X.2019.12.001 [5] 郭幼丹, 王大镇, 吴华峰, 等. 10CrNi3MoV船用钢热冲压成形表层渐变微观结构与抗冲击性能[J]. 船舶工程, 2019, 41(11): 105-109+141. GUO You-dan, WANG Da-zhen, WU Hua-feng et al. Gradually changing surface microstructure and impact resistance of hot stamping 10crni3mov marine steel[J]. Ship Engineering, 2019, 41(11): 105-109+141.