﻿ 基于AMESim的无磁式气动浮力调节系统分析及验证
 舰船科学技术  2022, Vol. 44 Issue (16): 79-82    DOI: 10.3404/j.issn.1672-7649.2022.16.015 PDF

1. 华中科技大学 船舶与海洋工程学院, 湖北 武汉 430074;
2. 中国船舶集团有限公司第七二二研究所, 湖北 武汉 430025

Analysis and verification of non-magnetic pneumatic buoyancy control system based on AMESim
CHENG Hui-min1, ZHENG Huan2, LIU biao1, LI Dong-shan1, YU Zu-yao1
1. School of Ship and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430070 , China;
2. The 722 Research Institute of CSSC, Wuhan 430025, China
Abstract: Combined with the buoyancy regulation principle, a set of non-magnetic airbag buoyancy regulation system is designed, which realizes the purpose of buoyancy regulation through the change of airbag volume. The simulation model of the pneumatic system was established by AMESim software, and the simulation results are analyzed, which verifies the reliability of the system and the feasibility of the control, and carries out the marine test to verify. The results show that the non-magnetic underwater platform can achieve stable floating, sinking and hovering at fixed depth.
Key words: buoyancy control     pneumatic system     motion control     AMESim
0 引　言

1 浮力调节系统原理

 $F = {F_h} + {F_b} + G，$ (1)

 ${F_b} = G，$ (2)
 ${F_b} = \rho gV = \rho g({V'} + {V''})，$ (3)

 $mg - \rho g({V_c} - {C_v}x + V(t)) - \text{sign}(v){C_q}\mathop {{x^2}}\limits^ \cdot = m\mathop x\limits^ \cdot。$ (4)

 图 1 气动浮力调节原理图 Fig. 1 Schematic diagram of pneumatic buoyancy regulation
2 浮力调节系统性能仿真

 图 2 浮力调节系统仿真框图 Fig. 2 Simulation block diagram of buoyancy regulation system

 图 3 气囊组件示意图 Fig. 3 Schematic diagram of airbag module

 图 4 气囊仿真图 Fig. 4 Airbag simulation diagram

 图 5 水下试验平台深度-时间仿真曲线 Fig. 5 Depth-time simulation curve of underwater experimental platform

 图 6 气囊压力-时间仿真曲线 Fig. 6 Airbag pressure-time simulation curve

 图 7 水下试验平台舱内压力-时间仿真曲线 Fig. 7 Pressure-time simulation curve of underwater experimental platform

 图 8 单向阀流量-时间仿真曲线 Fig. 8 Flow-time simulation curve of check valve
3 浮力调节系统海洋试验

 图 9 水下试验平台深度-时间仿真/试验曲线 Fig. 9 Depth-time simulation/test curve of underwater platform

 图 10 气囊压力-时间仿真/试验曲线 Fig. 10 Airbag pressure-time simulation/test curve

 图 11 气囊相对安全压力-时间试验曲线 Fig. 11 Relative safety pressure-time test curve of airbag

 图 12 气囊体积-时间试验曲线 Fig. 12 volume-time test curve of airbag
4 结　语

 [1] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106. [2] WANG Yan-hui, SHAO Shuai, WANG Shu-xin. Navigation system design of a deep-sea AUV[J]. Sea Technology, 2013, 54(8). [3] PARAMESWARAR S, SHARMA R, THONDIYATH A. Design and development of a depth controller for an autonomous underwater vehicle with variable buoyancy engine using coefficient diagram method[P]. Mechatronics Systems and Control Engineering, 2018. [4] 张学丰. 混合驱动的水下无人航行器总体设计与性能研究[D]. 镇江: 江苏科技大学, 2019. [5] 邵来. 全海深水下滑翔机浮力驱动系统设计与试验研究[D]. 天津: 天津大学, 2018. [6] 夏城城. 水下滑翔机系统设计与优化[D]. 杭州: 浙江大学, 2018. [7] 田冠枝, 苑利维, 宋显成, 等. 高精度UUV浮力调节装置控制驱动技术研究[J]. 舰船科学技术, 2019, 41(21): 108-111. TIAN Guan-zhi, YUAN Li-ei, SONG Xian-cheng, et al. Control and drive techniques for the high-precision buoyancy regulation device of UUV[J]. Ship Science and Technology, 2019, 41(21): 108-111. [8] 王佳. AUV浮力调节系统设计及控制策略研究[D]. 天津: 天津大学, 2018. [9] 方旭. 油囊式浮力调节装置的研制[D]. 武汉: 华中科技大学, 2012. [10] 武建国, 王雨, 郑荣. 基于浮力调节的液压系统动态特性仿真[J]. 海洋技术学报, 2014, 33(3): 6-11. [11] 孙英哲, 张巍, 张奇峰, 等. 基于AMESim的深海潜水器增压缸式浮力调节系统研究及仿真[J]. 机床与液压, 2018, 46(1): 40-44. [12] 赵伟, 杨灿军, 陈鹰. 水下滑翔机浮力调节系统设计及动态性能研究[J]. 浙江大学学报(工学版), 2009, 43(10): 1772-1776.