﻿ 爆炸荷载下舰船复合材料上层建筑结构动力响应分析
 舰船科学技术  2022, Vol. 44 Issue (16): 20-23    DOI: 10.3404/j.issn.1672-7649.2022.16.004 PDF

Dynamic response analysis of ship composite superstructure under explosion load
LAI Zhen-yu
School of Science and Technology, Nanchang University, Jiujiang 332020, China
Abstract: For an active ship superstructure composite structure as the prototype, through the finite element simulation software, establish the upper end of the eight ships composites building simulation model, analysis under explosion loading ship superstructure composite structure dynamic response, eight end face is the front, top 1, top 2 and top 3, side 1, 2, the back-end side, bottom. The test results show that the farther the distance between the detonation center and the superstructure, the smaller the stress, the smaller the possibility of deformation, and the maximum stress value of the end face of the action direction of the explosion shock wave. The distance between the front end, upper end 1, upper end 2 and side end 2 of the superstructure and the initiation center gradually decreases, while the distance between the top end 3, side end 1 and back end and the initiation center gradually becomes closer, and the stress peak gradually increases. The closer the distance between the initiation center and the superstructure, the greater the peak velocity and acceleration. With the extension of time, the dynamic response of the superstructure shows a decreasing trend.
Key words: explosive load     ship composite materials     superstructure     dynamic response     finite element     the simulation model
0 引　言

1 材料与方法 1.1 舰船复合材料上层建筑结构仿真模型建立

 图 1 舰船复合材料上层建筑结构外形仿真模型 Fig. 1 Simulation model of warship composite superstructure structure

 图 2 上层建筑结构模型网格划分结果 Fig. 2 Meshing results of superstructure model
1.2 爆炸载荷计算方法

 $D = \frac{W}{{{R^3}}}。$ (1)

2 试验分析 2.1 不同爆炸距时上层建筑结构动力响应分析

 图 3 不同爆炸距时上层建筑结构动力响应云图 Fig. 3 Dynamic response cloud diagram of superstructure at different explosion distances

2.2 不同相对角度时上层建筑结构动力响应分析

 图 4 不同炸药相对基准线角度时的应力变化情况 Fig. 4 Stress changes at different explosive angles relative to the reference line
2.3 复合材料上层建筑结构速度与加速度响应分析

 图 5 上层建筑结构前端速度与加速度曲线 Fig. 5 Velocity and acceleration curves of the front end of the superstructure

 图 6 上层建筑结构后端速度与加速度曲线 Fig. 6 Velocity and acceleration curves of the rear end of the superstructure

3 结　语

 [1] 李涵, 郭占一. 轻型复合材料上层建筑与钢质船体连接结构设计分析[J]. 中国舰船研究, 2020, 15(4): 36-45. DOI:10.19693/j.issn.1673-3185.01565 [2] 关博心, 王军林, 敦晨阳, 等. 爆炸荷载作用下单层球面网壳的动力响应分析[J]. 河北农业大学学报, 2019, 42(2): 122-126+131. DOI:10.13320/j.cnki.jauh.2019.0045 [3] 马福临, 杨娜娜, 赵天佑, 等. 冲击波-破片群联合作用下舰船复合材料结构近场动力学损伤模拟[J]. 爆炸与冲击, 2022, 42(3): 89-100. DOI:10.11883/bzycj-2021-0080 [4] 梅志远. 舰船复合材料结构物应用工程技术特点及内涵分析[J]. 中国舰船研究, 2021, 16(2): 1-8. DOI:10.19693/j.issn.1673-3185.02098 [5] 杨娜娜, 赵天佑, 陈志鹏, 等. 破片冲击作用下舰船复合材料结构损伤的近场动力学模拟[J]. 爆炸与冲击, 2020, 40(2): 67-77. DOI:10.11883/bzycj-2019-0019 [6] 毛柳伟, 祝心明, 黄治新, 等. 水下爆炸载荷下复合点阵夹层结构冲击响应分析[J]. 中国舰船研究, 2022, 17(3): 253-263. DOI:10.19693/j.issn.1673-3185.02503