﻿ 舱壁组合结构抗高速破片侵彻性能研究
 舰船科学技术  2022, Vol. 44 Issue (16): 13-19    DOI: 10.3404/j.issn.1672-7649.2022.16.003 PDF

Research on anti-penetration performance of composite bulkhead structure in high-speed fragments
WU Wei, LI Dian, HOU Hai-liang, LI Yong-qing
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: In order to study the anti-high-speed fragment penetration performance of the combined structure, a combined structure of marine steel and glass fiber/aramid blended composite material was designed. Numerical simulation calculations of the combined structure under different conditions of high-speed fragment penetration were carried out, and the high-speed fragments were analyzed. The penetration process of the composite structure, as well as the influence of the fragment penetration posture, stacking order, blended fiber volume ratio and gap on the anti-elasticity performance of the composite structure. Numerical calculation results show that: affected by the volume ratio of glass fiber/aramid fiber and the interval, the anti-elastic performance of the composite structure when the steel plate is in front is not necessarily the best; when the fragments penetrate the composite structure in a face attitude, the penetration performance is the best; If the composite material laminate is required to be in front of the structure without reducing the anti-elasticity performance, the laminate needs higher shear strength.
Key words: combined structure     high-speed fragments     penetration     damage morphology
0 引　言

1 数值计算模型 1.1 组合结构工况

 图 1 组合结构形式示意图 Fig. 1 Diagram of combined structure form

1.2 数值计算模型

 图 2 数值计算模型 Fig. 2 Model of numerical calculation

2 数值计算结果分析 2.1 侵彻过程

 图 3 钢板中面节点面外位移图 Fig. 3 Node displacement of steel middle surface

 图 4 结构形式A侵彻过程 Fig. 4 Penetration process of structure A

 图 5 结构形式C侵彻过程 Fig. 5 Penetration process of structure C

 图 6 结构形式B侵彻过程 Fig. 6 Penetration process of structure B

 图 7 结构形式D破坏形貌 Fig. 7 Destruction morphology of structure D
2.2 破片姿态影响

 图 8 破片姿态示意图 Fig. 8 Diagram of fragmentation posture

 图 9 破片不同姿态下破片剩余速度分布图 Fig. 9 Distribution of Vr with different posture

 $S = {a^2}(\sin \alpha + \cos \alpha )，$

 $S=\sqrt{3}{a}^{2}\mathrm{sin}（{\text{π}} /4+\beta ) 。$

2.3 堆叠次序影响

 图 10 4 mm钢/8.5 mm层合板结构下破片剩余速度分布图 Fig. 10 Distribution of Vr under 4 mm steel/8.5 mm laminate structure

3 结　语

1）组合结构抗高速破片侵彻时，钢板主要发生剪切冲塞破坏，钢板前置时背弹面的凸起高度、凸起变形的范围要小于后置钢板；复合材料层合板前置时，迎弹面发生压剪破坏的厚度比后置时更大。

2）间隙的存在，使得前置层合板背弹面有足够拉伸变形空间，减小层合板压剪破坏的厚度；破片穿透前置板后，间隙会放大破片的姿态变化，改变靶板的能量吸收值。

3）破片姿态显著改变破片的侵彻性能，侵彻性能由大到小，破片姿态分别是面姿态、线姿态、点姿态，同时受到组合结构组合形式的影响。

4）玻纤/芳纶体积比影响着组合结构抗弹性能。层合板前置时，混纺复合材料层合板的抗剪强度越高，组合结构抗弹性能越高；层合板后置时，无间隙时组合结构抗弹性能与层合板的抗剪强度呈负相关，有间隙时存在最优的混纺比使得组合结构的抗弹性能最优。

 [1] 王勇, 李静, 胡阳旭, 等. 国外抗弹纤维及其复合材料的研究进展[J]. 兵器装备工程学报, 2017, 38(12): 146-150. WANG Yong, LI Jing, HU Yangxu, GUO Ruiping, ZHENG Bin. Research progress of ballistic fiber and its composite materials abroad[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 146-150. DOI:10.11809/scbgxb2017.12.033 [2] 王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能试验研究[J]. 爆炸与冲击, 2009, 29(1): 29-34. WANG Xiaoqiang, ZHU Xi, MEI Zhiyuan, et al. Experimental study on the anti-elastic properties of ultra-high molecular weight polyethylene fiber reinforced laminated thick plates[J]. Explosion and Shock, 2009, 29(1): 29-34. DOI:10.3321/j.issn:1001-1455.2009.01.006 [3] 杨升山, 周鑫磊, 张猛. 舰船用轻型复合装甲研究与应用[J]. 材料开发与应用, 2010, 25(1): 74-76. YANG Shengshan, ZHOU Xinlei, ZHANG Meng. Research and application of light composite armor for ships[J]. Material Development and Application, 2010, 25(1): 74-76. DOI:10.3969/j.issn.1003-1545.2010.01.020 [4] 李典, 侯海量, 朱锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237-250. LI Dian, HOU Hailiang, ZHU Xi, Chen Changhai, li Mao. Research progress of ship armor protection structure against ballistic impact[J]. China Shipbuilding, 2018, 59(1): 237-250. DOI:10.3969/j.issn.1000-4882.2018.01.023 [5] 朱锡, 梅志远, 徐顺棋, 等. 高速破片侵彻舰用复合装甲模拟试验研究[J]. 兵工学报, 2003(4): 530-533. ZHU Xi, MEi Zhiyuan, XU Shunqi, et al. Simulation test study of high-speed fragments penetrating the composite armor of ships[J]. Acta Armamentarii, 2003(4): 530-533. DOI:10.3321/j.issn:1000-1093.2003.04.023 [6] 张元豪, 陈长海, 朱锡. 钢/玻璃钢组合结构对高速弹丸的抗侵彻特性[J]. 中国舰船研究, 2017, 12(1): 93-100. ZHANG Yuanhao, CHEN Changhai, ZHU Xi. Anti-penetration characteristics of steel/glass reinforced plastic composite structure against high-speed projectiles[J]. China Ship Research, 2017, 12(1): 93-100. DOI:10.3969/j.issn.1673-3185.2017.01.014 [7] 陈长海, 朱锡, 侯海量, 等. 舰船舷侧复合装甲结构抗动能穿甲模拟试验[J]. 爆炸与冲击, 2011, 31(1): 11-18. CHEN Changhai, ZHU Xi, HOU Hailiang, et al. Simulation test of anti-kinetic energy penetration of ship's side composite armor structure[J]. Explosion and Shock, 2011, 31(1): 11-18. [8] YANG, Zhiming, et al. Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composites. Composite Structures, 2019, 229: 111434. [9] GRUJICIC, M. , et al. A computational analysis of the ballistic performance of light-weight hybrid composite armors. Applied Surface Science, 2006, 253.2: 730–745. [10] BANDARU, Aswani Kumar; VETIYATIL, Lakshmi; AHMAD, Suhail. The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Composites Part B: Engineering, 2015, 76: 300–319. [11] 王玺, 陈斌. UHMWPE层合板抗侵彻数值模拟研究: 第26届全国结构工程学术会议[C]// 长沙: 2017, 645–649 WANG Xi, CHEN Bin. Numerical simulation research on anti-penetration of UHMWPE laminates: The 26th National Structural Engineering Conference [C]// Changsha: 2017, 645–649 [12] IQBAL M A, GUPTA G, DIWAKAR A, et al. Effect of projectile nose shape on the ballistic resistance of ductile targets[J]. European Journal of Mechanics-A/Solids, 2010, 29(4): 683-694. DOI:10.1016/j.euromechsol.2010.02.002 [13] 王耀先, 程树军. 高性能有机纤维增强复合材料的界面粘结性能研究[J]. 玻璃钢/复合材料, 2012(S1): 25-29. WANG Yaoxian, CHENG Shujun. Research on the interfacial bonding properties of high-performance organic fiber reinforced composites[J]. Glass fiber reinforced plastics/composites, 2012(S1): 25-29. [14] 李典, 侯海量, 朱锡, 等. 破片群侵彻纤维增强层合板破坏机理及穿甲能力等效方法[J]. 兵工学报, 2018, 39(4): 707-716. LI Dian, HOU Hailiang, ZHU Xi, Chen Changhai, Li Mao. The failure mechanism of the fragment group penetrating the fiber-reinforced laminate and the equivalent method of armor penetration ability[J]. Acta Armamentarii, 2018, 39(4): 707-716. DOI:10.3969/j.issn.1000-1093.2018.04.010 [15] 刘雨佳, 侯海量, 李茂, 等. 前舱物对低速大质量平头弹侵彻金属薄板的影响[J]. 高压物理学报, 2020, 34(1): 123-130. LIU Yujia, HOU Hailiang, LI Mao, et al. The effect of the front compartment on the penetration of thin metal plates by low-velocity and large-mass flat-nosed projectiles[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 123-130. [16] SONG W, NING J, WANG J. Normal impact of truncated oval-nosed projectiles on stiffened plates[J]. International journal of impact engineering, 2008, 35(9): 1022-1034. DOI:10.1016/j.ijimpeng.2007.05.008