﻿ 聚能装药水下爆炸冲击波峰值压力分布规律
 舰船科学技术  2022, Vol. 44 Issue (16): 8-12    DOI: 10.3404/j.issn.1672-7649.2022.16.002 PDF

Distribution law of peak pressure of shaped charge underwater explosion
WANG Jian, LU Xi, MA Yang, LIU Shao-shang, FU Hai-qing
School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
Abstract: In order to study the distribution law of shaped charge's shock wave, a simulation model of underwater explosion of shaped charge on the circular target was established, and the reliability of the simulation model was verified by comparison with the experimental results. The peak pressure's distribution law of the forward shock wave is analyzed by simulation calculation. The results show that the forward shock wave front close to the air chamber is approximately flat, and its pressure intensity is significantly smaller than that of the side direction. The peak pressure under the same axial distance first increases and then decreases with the radial distance, and the position of the maximum point is linearly distributed in space.
Key words: underwater explosion     shaped charge     shock wave     peak pressure     Autodyn
0 引　言

1 仿真模型 1.1 工况条件

 图 1 弹靶模型 Fig. 1 Model of target and bullet
1.2 网格模型

 图 2 二维仿真模型 Fig. 2 2D simulation model

 图 3 三维仿真模型 Fig. 3 3D simulation model
1.3 材料模型

COMP B炸药爆轰产物中的压力用JWL状态方程描述：

 $p=A\left(1-\frac{\omega }{{R}_{1}V}\right){e}^{{R}_{1}V}+B\left(1-\frac{\omega }{{R}_{2}V}\right){e}^{{R}_{2}V}+\frac{\omega E}{V}。$ (1)

 $p = {A_1}\mu + {A_2}{\mu ^2} + {A_3}{\mu ^3} + \left( {{B_0} + {B_1}\mu } \right){\rho _0}e，$ (2)
 $p = {T_1}\mu + {T_2}{\mu ^2} + {B_0}{\rho _0}e。$ (3)

921钢状态方程为Linear，采用Cowper SRmonds强度模型和Plastic Strain失效模型。Q345钢的状态方程和失效模型与921钢相同，强度模型为von Mises。靶标的部分材料参数如表3所示。模型中其他材料的状态方程和部分参数如表4所示，均为Autodyn软件中的默认参数。

2 仿真与实验结果对比

 图 4 靶板实验结果 Fig. 4 Experimental results of target

 图 5 靶板仿真结果 Fig. 5 Simulation results of target
3 前向冲击波特性分析

 图 6 压力变化过程 Fig. 6 Changing of pressure

 图 7 峰值压力变化曲线 Fig. 7 Changing curve of peak pressure

 ${p_m}(h,y) = a{{ - }}b \times {c^y}，$ (4)
 $a = 0.22 + 1.42{e^{{{ - }}h/43}}，$ (5)
 $b = 0.38 + 58{e^{{{ - h}}/23}}，$ (6)
 $c = 0.975{{ - }}0.09{e^{{{ - }}h/67}}。$ (7)

 ${p_m}(h,y) = A + By + C{y^2} ，$ (8)
 $A = 0.28 + 3.8{e^{{{ - }}h/23.6}}，$ (9)
 $B = 4.5 \times {10^{{{ - 4}}}}{{ - 0}}{\text{.04}}{e^{{{ - }}h/15.6}} ，$ (10)
 $C = {{ - 4}} \times {\text{1}}{{\text{0}}^{{{ - 6}}}} + {\text{1}}{\text{.3}} \times {10^{{{ - 4}}}}{e^{{{ - }}h/9.2}}。$ (11)

 图 8 峰值压力最大值位置 Fig. 8 Position of peak pressure maximum

 $y = 0.42h + 67.27 。$ (12)

 ${p_m}(h,y) = \left\{ \begin{gathered} 0.22 + 1.42{e^{-h/43}}-(0.38 + 58{e^{-h/23}})\times \\ {(0.975{\text{ - 0}}{\text{.09}}{e^{-h/67}})^y}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} y \leqslant 0.42h + 67.27，\\ 0.28 + 3.8{e^{-h/23.6}} + (\frac{{4.5}}{{{{10}^4}}}-\frac{{4{e^{-h/15.6}}}}{{{\text{1}}{{\text{0}}^{\text{2}}}}})y+ \\ (\frac{{{\text{ - 4}}}}{{{{10}^6}}} + \frac{{1.3{e^{-h/9.2}}}}{{{{10}^4}}}){y^2}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} y \geqslant 0.42h + 67.27 。\end{gathered} \right.$ (13)

 图 9 峰值压力最大值曲线 Fig. 9 Curve of peak pressure maximum
4 结　语

1）冲击波压力随传播距离的增大逐渐衰减，远离空气舱的冲击波在传播过程中呈现均匀化和球形化的特点。靠近空气舱位置的前向冲击波波阵面近似平面，空气舱附近压力明显小于侧向压力。

2）在同一轴向距离下，冲击波峰值压力随着径向距离先增大再减小，即存在一个峰值压力最大值，该最大值点的轴向与径向坐标关系呈线性分布。

3）利用冲击波峰值压力沿径向和轴向分布数据，采用分段拟合的方法，得到了峰值压力计算经验公式，平均误差率为2.2%，误差率较小，拟合效果较好。

 [1] 宋晓东, 杨清轩, 苏强, 等. 国外常规潜艇未来发展方向研究[J]. 舰船科学技术, 2015, 37(11): 8-13. SONG Xiao-dong, YANG Qing-xuan, SU Qiang, et al. Research on development direction of foreign SSK[J]. Journal of Ship Science and Technology, 2015, 37(11): 8-13. DOI:10.3404/j.issn.1672-7649.2015.11.002 [2] 杜度, 魏征, 陈科, 等. 美国海军战略演变与核潜艇装备发展分析[J]. 舰船科学技术, 2021, 43(5): 177-180. DU Du, WEI Zheng, CHEN Ke, et al. Analysis on the evolution of US naval strategies and the development of nuclear submarines[J]. Journal of Ship Science and Technology, 2021, 43(5): 177-180. DOI:10.3404/j.issn.1672-7649.2021.05.036 [3] 金健, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述[J]. 爆炸与冲击, 2020, 40(11): 1-25. JIN Jian, ZHU Xi, HOU Hai-liang, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions[J]. Journal of Explosion and Shock Waves, 2020, 40(11): 1-25. DOI:10.11883/bzycj-2019-0378 [4] 李兵, 房毅, 冯鹏飞. 聚能型战斗部水中兵器毁伤研究进展[J]. 兵器装备工程学报, 2016, 37(2): 1-6. LI Bing, FANG Yi, FENG Peng-fei. Process of damage research on shaped-charge warhead of underwater weapon[J]. Journal of Ordnance Equipment Engineering, 2016, 37(2): 1-6. DOI:10.11809/scbgxb2016.02.001 [5] 刘念念, 宋丹丹, 金辉, 等. 半球形聚能装药对复合靶板结构的毁伤数值仿真与实验研究[J]. 振动与冲击, 2018, 37(4): 153-159. [6] 王长利, 周刚, 马坤, 等. 典型含水复合结构在聚能装药水下爆炸作用下的毁伤[J]. 船舶力学, 2018, 22(8): 1001-1010. WANG Chang-li, ZHOU Gang, MA Kun, et al. Damage anlysis of typical water partitioned structure under shaped charge underwater explosion[J]. Journal of Ship Mechanics, 2018, 22(8): 1001-1010. DOI:10.3969/j.issn.1007-7294.2018.08.010 [7] 胡晓敏, 刘迎彬, 胡晓艳, 等. 药型罩结构对超聚能射流性能影响的数值模拟[J]. 兵器装备工程学报, 2019, 40(9): 41-45. DOI:10.11809/bqzbgcxb2019.09.009 [8] 张社荣, 孔源, 王高辉, 等. 水下和空中爆炸冲击波传播特性对比分析[J]. 振动与冲击, 2014, 33(13): 148-153. ZHANG She-rong, KONG Yuan, WANG Gao-hui, et al. Comparative analysis on propagation characteristics of shock wave induced by underwater and air explosions[J]. Journal of Vibration and Shock, 2014, 33(13): 148-153. [9] R RAJENDRAN, K NARASIMHAN. Deformation and fracture behavior of plate specimens subjected to underwater explosion[J]. International Journal of Impact Engineering, 2006, 32: 1945-1963. DOI:10.1016/j.ijimpeng.2005.05.013 [10] 彭依云, 王铭明, 高长伟. 近场水下爆炸冲击波对板架结构毁伤特性研究[J]. 船舶力学, 2020, 24(8): 1081-1090. DOI:10.3969/j.issn.1007-7294.2020.08.013 [11] LI Jian, RONG Ji-li. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion[J]. European Journal of Mechanics B/Fluids, 2012, 32: 59-69. DOI:10.1016/j.euromechflu.2011.09.009 [12] 李金河, 汪斌, 王彦平, 等. 不同装药形状TNT水中爆炸近场冲击波传播的实验研究[J]. 火炸药学报, 2018, 41(5): 461-464. [13] 马坤, 王长利, 李名锐, 等. 聚能装药水下爆炸载荷特性[J]. 兵器材料科学与工程, 2019, 42(1): 1-5. MA Kun, WANG Chang-li, LI Ming-rui, et al. Underwater explosion load characteristic of shaped charge warhead[J]. Journal of Ordnance Material Science and Engineering, 2019, 42(1): 1-5.