﻿ 平面冲击波载荷作用下加筋板爆炸响应研究
 舰船科学技术  2022, Vol. 44 Issue (16): 1-7    DOI: 10.3404/j.issn.1672-7649.2022.16.001 PDF

Research on blast response of stiffened panel under plane shock wave loading
ZHANG Xin-yu, LIU Kun, KE Li, WANG Jia-xia, WANG Zi-li
Jiangsu University of Science and Technology, School of Naval Architecture and Ocean Engineering, Zhenjiang 212100, China
Abstract: Stiffened panel is widely used in ship construction. The research on its anti-blast performance is helpful to enhance the vitality of ship. In this paper, the stiffened panel is taken as the research object, and the blast test is carried out to study the blast response of the stiffened panel under the continuous plane shock wave load. According to the test results, the empirical expression of shock wave pressure with scale distance and load duration is proposed, and the numerical simulation is carried out by using the formula. It is found that the calculated results are in good agreement with the test results. The results show that the anti-blast performance of the structure is different in different directions under the action of stiffeners. Stiffeners can effectively improve the impact resistance of stiffened plates. In addition, the effect of peak pressure on the response of stiffened plate is discussed, and the ultimate load of stiffener is determined.
Key words: stiffened panel     plane shock wave     damage deformation     stress-strain     blast test     dynamic response
0 引　言

1 爆炸试验 1.1 试验模型与装置

 图 1 试验模型 Fig. 1 Test model

 图 2 面板画线 Fig. 2 Draw line on the panel

 图 3 爆炸试验装置[18] Fig. 3 The test device applied to air blast
1.2 试验工况及测量参数

 图 4 测点布置图 Fig. 4 Layout of measuring points
1.3 试验结果及分析 1.3.1 应力应变

 $\left\{ \begin{gathered} {\sigma _{\text{1}}}{\text{ = }}\frac{E}{2}\left[ {\frac{{{\varepsilon _0} + {\varepsilon _{90}}}}{{1 - v}} + \frac{1}{{1 + v}}\sqrt {{{({\varepsilon _0} - {\varepsilon _{90}})}^2} + {{(2{\varepsilon _{45}} - {\varepsilon _0} - {\varepsilon _{90}})}^2}} } \right] ，\\ {\sigma _{\text{2}}}{\text{ = }}\frac{E}{2}\left[ {\frac{{{\varepsilon _0} + {\varepsilon _{90}}}}{{1 - v}} - \frac{1}{{1 + v}}\sqrt {{{({\varepsilon _0} - {\varepsilon _{90}})}^2} + {{(2{\varepsilon _{45}} - {\varepsilon _0} - {\varepsilon _{90}})}^2}} } \right] ，\\ {\tau _{\max }} = \frac{E}{{1 + v}}\sqrt {{{({\varepsilon _0} - {\varepsilon _{90}})}^2} + {{(2{\varepsilon _{45}} - {\varepsilon _0} - {\varepsilon _{90}})}^2}} 。\\ \end{gathered} \right.$ (1)

 ${\sigma _s}{\text{ = }}\frac{1}{{\sqrt 2 }}\sqrt {{{({\sigma _1} - {\sigma _2})}^2} + {{({\sigma _2} - {\sigma _3})}^2} + {{({\sigma _3} - {\sigma _1})}^2}}，$ (2)

 ${\sigma _0}{\text{ = }}\frac{1}{{\sqrt 2 }}\sqrt {{{({\sigma _1} - {\sigma _2})}^2} + \sigma _1^2 + \sigma _2^2} ，$ (3)

 图 5 爆炸试件测点处应力值 Fig. 5 Stress value of explosion specimen at measuring point

 图 6 500 kPa载荷作用下加筋板结构响应情况 Fig. 6 Response of stiffened plate under 500 kPa load

1.3.2 加速度

 图 7 爆炸试件各点加速度值 Fig. 7 Acceleration value at different measuring point of explosive specimen

1.3.3 损伤变形情况

500 kPa爆炸载荷作用下加筋板的结构变形情况如图8所示。

 图 8 500 kPa爆炸载荷下加筋板结构变形情况 Fig. 8 Deformation of stiffened plate structure under 500 kPa explosion load

 图 9 典型加筋板架结构变形情况 Fig. 9 Deformation of typical stiffened grillage structure

2 平面冲击载荷数值仿真研究 2.1 有限元模型

 图 10 加筋板有限元模型 Fig. 10 Finite element model of stiffened panel

 $\left\{ \begin{gathered} P = {P_s}\frac{t}{{{\tau _r}}}{\text{ }}(0 \leqslant t \leqslant {\tau _r})，\\ P = {P_s}\left(1 - \frac{{t - {\tau _r}}}{{{\tau _d}}}\right){e^{ - a\frac{{t - {\tau _r}}}{{{\tau _d}}}}}{\text{ }}({\tau _r} \leqslant t \leqslant {\tau _ + })。\\ \end{gathered} \right.$ (4)

 $a = 4.228P_s^{0.38} + 9.59P_s^{0.79}{e^{ - 4.55\frac{{0.4 - {\tau _r}}}{{{\tau _d}}}}}，$ (5)
 ${P_s} = \mu {P_{so}} ，$ (6)
 ${P_{so}} = \frac{{0.13}}{Z}{\text{ - }}\frac{{0.668}}{{{Z^2}}}{\text{ + }}\frac{{2.614}}{{{Z^3}}}{\text{ (MPa)}} 。$ (7)

 图 11 核爆幅值曲线拟合情况对比 Fig. 11 Comparison of nuclear explosion amplitude curve fitting

2.2 结果对比分析 2.2.1 加速度结果对比

 图 12 加速度对比（试验-仿真） Fig. 12 Comparison of accelerations（test-simulation）

2.2.2 损伤变形结果对比

 图 13 典型加筋结构计算云图 Fig. 13 Calculation nephogram of typical reinforced structure

 图 14 典型加筋结构测点变形情况 Fig. 14 Deformation of measuring points of typical reinforced structure

 图 15 典型加筋结构测点变形情况 Fig. 15 Deformation of measuring points of typical reinforced structure

2.3 载荷峰值影响分析

 图 16 等效塑性应变情况 Fig. 16 Equivalent plastic strain

 图 17 不同载荷峰值下等效塑性应变 Fig. 17 Equivalent plastic strain under different load peaks

3 结　语

1）在500 kPa爆炸载荷作用下，加筋板进入塑性阶段。该结构发生破坏时的临界载荷峰值为1 200 kPa，符合国军标要求，抗爆性能较为优良。

2）不同峰值载荷下加筋板的破坏情况不同。随着峰值压力的增大，加筋板转角处的塑性应变逐渐累积，加筋板与板之间的连接节点处更容易发生破坏。

3）在加强筋的作用下，结构在不同方向的抗爆性能不同。结构变形主要发生在加强筋两侧，在实际应用中，可在两侧进行加固处理，从而提高结构的抗爆性能。

 [1] LYNCH C J, MURPHY A, PRICE M, et al. The computational post-buckling analysis of fuselage stiffened panels loaded in compression[J]. Thin-walled Structures, 2004, 42: 1445-1464. DOI:10.1016/j.tws.2004.04.002 [2] CHEN Hao, LAI Hongpeng, QIU Yuliang , et al Reinforcing Distressed Lining Structure of Highway Tunnel with Bonded Steel Plates: Case Study [J]. Journal of Performance of Constructed Facilities, 2020, 34(1). [3] LI Yongxuan, LIU Yuqing, LIU Rong. Finite Element Analysis on Axial Compressive Behaviors of High-Performance Steel Stiffened Plates in Bridge Application [J]. International Journal of Steel Structures, 2019, 19(5). [4] MASOOD S N, VISHAKH R, VISWAMURTHY S R, et al. Influence of stiffener configuration on post-buckled response of composite panels with impact damages[J]. Composite Structures. 2018, 194: 433–444. [5] CAMPBELL J, HETEY L, VIGNJEVIC R. Non-linear idealisation error analysis of a metallic stiffened panel loaded in compression[J]. Thin-Walled Structures, 2012, 54: 44–53. [6] RUDRAPATNA N S, VAZIRI R, OLSON M D. Deformation and failure of blast-loaded stiffened plates[J]. International Journal of Impact Engineering, 2000, 24(5): 457–474. [7] ZONG Z, ZHAO Y, LI H. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock[J]. Marine Structures, 2013, 31: 24–43. [8] ZAKRISSON B, WIKMAN B, HÄGGBLAD H Å. Numerical simulations of blast loads and structural deformation from near-field explosions in air[J]. International Journal of Impact Engineering, 2011, 38(7): 597–612. [9] BERNSTEIN D, GOETTELMAN R C. Generation of cylindrically symmetric implosions[J]. Review of Scientific Instruments, 1966, 37(10): 1373–1375. [10] BENEDICK W B. Detonation wave shaping[R]. Albuquerque, N. Mex. : Sandia Labs. , 1972. [11] FRITZ J N. A simple plane-wave explosive lens[R]. NM (USA): Los Alamos National Lab. , 1990. [12] YADAV H S, KAMAT P V, Sundaram S G. Study of an explosive-driven metal plate[J]. Propellants, Explosives, Pyrotechnics, 1986, 11(1): 16–22. [13] CHEN C Y, SHIUAN J H, LAN I F. Design of an inert material type plane wave generator[J]. Propellants, explosives, pyrotechnics, 1993, 18(3): 139–145. [14] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. On the synthesis of plane wave generators: performance limits, design paradigms and effective algorithms[C]//2012 6th European Conference on Antennas and Propagation. Institute of Electrical and Electronics Engineers, 2012: 3500–3503. [15] ZHANG C S, ZOU D H, MADENGA V. Numerical simulation of wave propagation in grouted rock bolts and the effects of mesh density and wave frequency[J]. International journal of rock Mechanics and Mining Sciences, 2006, 4(43): 634-639. [16] XIONG W, ZHANG X, GUAN Z, et al. Study of simple plane wave generator with an air-metal barrier[J]. Defence Technology, 2014, 10(2): 190-197. DOI:10.1016/j.dt.2014.05.012 [17] DING C, NGO T, GHAZLAN A, et al. Numerical simulation of structural responses to a far-field explosion[J]. Australian Journal of Structural Engineering, 2015, 16(3): 226-236. DOI:10.1080/13287982.2015.1092686 [18] 邱艳宇, 卢红标, 蔡立艮. 爆炸冲击波信号处理方法比较[J]. 爆破, 2010, 27(1): 92-95. DOI:10.3963/j.issn.1001-487X.2010.01.025 [19] JONES N. Structural impact[M]. Cambridge University Press, 2011. [20] BAKER W E, COX P A , KULESZ J J , et al. Explosion hazards and evaluation[M]. Elsevier, 2012. [21] HETHERINGTON J, SMITH P. Blast and ballistic loading of structures[M]. Chemical Rubber Company Press, 2014. [22] WU C, HAO H. Modeling of simultaneous ground shock and air-blast pressure on nearby structures from surface explosions[J]. International Journal of Impact Engineering, 2005, 31(6): 699-717. DOI:10.1016/j.ijimpeng.2004.03.002 [23] 柯力. 钢质夹层板上层建筑结构防护性能优化及抗爆试验研究[D]. 镇江: 江苏科技大学, 2020.