﻿ 侧推器及其控制系统的研究与仿真
 舰船科学技术  2022, Vol. 44 Issue (15): 119-122    DOI: 10.3404/j.issn.1672-7649.2022.15.024 PDF

1. 广西大学，广西 南宁 530004;
2. 武汉晴川学院，湖北 武汉 430204;
3. 枣庄科技职业学院 信息工程学院，山东 滕州 277800

Research and simulation of thruster and its control system
XIONG Shan-xia1,2, KONG De-ping3, ZHOU She2
1. Guangxi University, Nanning 530004, China;
2. Wuhan Qingchuan College, Wuhan 430204, China;
3. Zaozhuang Vocational College of Science and Technology School of Information Engineering, Tengzhou 277800, China
Abstract: When large ships move in the channel or port, due to the limitation of draft and moving space, the maneuverability of the hull is relatively poor, and ships are prone to collision, grounding and other accidents. At present, adjustable distance thruster is a commonly used auxiliary propulsion method for large ships, which can provide lateral thrust for ship movement in a narrow space and improve the motion performance of ships. The research direction of this paper is the principle research and Simulation of the ship thruster and its control system. The model of the thruster is established from the aspect of fluid dynamics, the composition of the thruster control system is analyzed, and the simulation verification of the ship thruster control system is carried out based on the Matlab software platform, which is helpful to improve the design level of the large-scale ship thruster.
Key words: thruster     control system     fluid dynamics     simulation
0 引　言

1）侧推器数学建模

2）侧推器关键硬件设计

3）侧推器控制系统设计和仿真

1 船舶侧推器的特性建模 1.1 船舶侧推器的水动力学特性建模

1）侧推器的桨叶中液体为理想流体；

2）桨叶受压均匀；

3）船舶侧推装置的槽道垂直于船舷。

 图 1 船舶侧推装置的流体动力学模型 Fig. 1 Hydrodynamic model of ship side thruster

 $\left\{ {\begin{array}{*{20}{l}} {{\rm{div}}} U = 0 \;，\\ \dfrac{{{\partial} u}}{{\partial t}} + {{\rm{div}}} (uU) = - \dfrac{1}{\rho }\dfrac{{\partial p}}{{\partial x}} + \gamma {{\rm{div}}} (u) \;，\\ {\dfrac{{\partial v}}{{\partial t}} + {{\rm{div}}} (vU) = - \dfrac{1}{\rho }\dfrac{{\partial p}}{{\partial y}} + \gamma {{\rm{div}}} (v)} \;，\\ {\dfrac{{\partial w}}{{\partial t}} + {{\rm{div}}} (wU) = - \dfrac{1}{\rho }\dfrac{{\partial p}}{{\partial z}} + \gamma {{\rm{div}}} (w)} \;。\end{array}} \right. \text{}$

 $\frac{{\partial \bar u}}{{\partial x}} + \frac{{\partial \bar v}}{{\partial y}} + \frac{{\partial \bar w}}{{\partial z}} = 0 \text{。}$

 $\bar \lambda = \frac{1}{T}\int_t^{t + T} \lambda (t){\rm{dt}} \text{，}$

 $\left\{ {\begin{array}{*{20}{l}} {\dfrac{{\partial (\rho \bar u)}}{{\partial t}} = - \dfrac{{\partial \bar p}}{{\partial x}} + {{\rm{div}}} \left( { - \rho \overline {{u^\prime }{U^\prime }} } \right) + \overline {{S_u}} } \;，\\ {\dfrac{{\partial (\rho \bar v)}}{{\partial t}} = - \dfrac{{\partial \bar p}}{{\partial y}} + {{\rm{div}}} \left( { - \rho \overline {{v^\prime }{U^\prime }} } \right) + \overline {{S_v}} } \;，\\ {\dfrac{{\partial (\rho \bar w)}}{{\partial t}} = - \dfrac{{\partial \bar p}}{{\partial z}} + {{\rm{div}}} \left( { - \rho \overline {{w^\prime }{U^\prime }} } \right) + \overline {{S_w}} } \;。\end{array}} \right.$
1.2 船舶侧推器的运动学建模

 ${F_L} = \frac{{\psi _\theta ^2{L^3}d}}{{{M_0}}} \text{。}$

 $\begin{gathered} \left\{ {\begin{array}{*{20}{l}} {{X_S} = \displaystyle\sum {\left( {1 + {a_{{X_s}}}} \right)} {X_{St}}} \;，\\ {{Y_S} = \displaystyle\sum {\left( {1 + {a_{{Y_s}}}} \right)} {Y_{St}}} \;，\\ {{N_S} = \displaystyle\sum {\left( {1 + {a_{{N_S}}}} \right)} {N_S}}，\end{array}} \right. \\ \left\{ {\begin{array}{*{20}{l}} {{{\hat X}_s} = {T_S}\cos {\delta _S} + {T_N}\sin {\delta _S}} \;，\\ {{{\hat Y}_s} = {T_S}\sin {\delta _S} + {T_N}\cos {\delta _S}} \;，\\ {{{\hat N}_s} = {{\hat Y}_s} \cdot {x_t} - {{\hat X}_s} \cdot {y_t}} \;。\end{array}} \right. \\ \end{gathered}$

 图 2 螺旋桨的推力、转矩系数与效率的关系曲线 Fig. 2 Relationship curve between propeller thrust, torque coefficient and efficiency
2 船舶侧推器的关键硬件设计

 图 3 船舶侧推器的桨轴结构设计原理图 Fig. 3 Structural design schematic diagram of propeller shaft of ship side thruster

1）由图3可知，左右轴承的轴肩定位需要承受较大轴向力，因此轴肩位置与该轴的配合为过盈配合[4]，轴肩高度为10 mm，左右轴承采用具有游隙的单列圆锥滚子轴承，2个轴承相互配合，抵消来自侧推器螺旋桨的轴向位移和轴向作用力。

2）桨轴位置的套筒同样具有定位作用，装配过程采用花键与轴连接，能够传递较大的扭矩，花键的基本参数压力角为20°，螺旋角为7°。

3）桨叶轴承采用2个球轴承，能够满足侧推器桨叶高速转动下的要求，桨叶轴承内径为200 mm，外径为350 mm。为了保证桨叶轴承运转过程中的可靠性，需要在桨轴中增加轴承测温传感器，如PT100等，实时监测桨叶轴承的运行温度，当温度高于85℃时，发出报警信号。

3 大型船舶侧推器控制系统的设计与仿真 3.1 大型船舶侧推器控制系统设计

 图 4 船舶侧推器控制系统原理图 Fig. 4 Schematic diagram of ship thruster control system

1）电源

2）人机控制站

3）遥控系统

4）安全系统和报警系统

3.2 大型船舶侧推器控制系统的仿真测试

 图 5 船舶侧推器控制系统的仿真程序 Fig. 5 Simulation program of ship thruster control system

1）比较相同航速下的船舶旋回数据[6]，Matlab程序输出信号的频率为5/s，并在软件界面显示数据组成的轨迹曲线；

2）分别对比不同侧推力峰值下的旋回轨迹数据，设置100 kN，200 kN，300 kN等不同的侧推力，对比其轨迹变化。

 图 6 侧推力为300 kN下的船舶运动仿真曲线 Fig. 6 Ship motion simulation curve with side thrust of 300 kN
4 结　语

 [1] 顾辉. 船舶侧推器基于PLC的控制系统设计[J]. 航海, 2011(3): 46-48. GU Hui. Design of PLC based control system for ship thruster[J]. Navigation, 2011(3): 46-48. [2] 吴赵发. 侧推器和控制系统的联合研制[J]. 国外舰船技术(特辅机电设备类), 1980(4): 10-12. WU Zhao-fa. Joint development of thruster and control system[J]. Foreign Ship Technology (Special Auxiliary Electromechanical Equipment), 1980(4): 10-12. [3] 张博实, 王科俊, 罗姣妍. 利用MATLAB进行船舶舵鳍联合减摇智能控制系统设计与仿真[J]. 计算机仿真, 2001(2): 76-79. ZhANG Bo-shi, WANG Ke-jun, LUO Jiao-yan. Using MATLAB to design and simulate the intelligent control system of ship rudder fin joint roll reduction[J]. Computer Simulation, 2001(2): 76-79. DOI:10.3969/j.issn.1006-9348.2001.02.022 [4] 仲钰. 基于西门子1200的船舶侧推控制系统概述[J]. 科学与信息化, 2019(26): 14-15. ZHONG Yu. Overview of ship thruster control system based on Siemens 1200[J]. Science and Informatization, 2019(26): 14-15. [5] 谢帅, 陈力, 于潇雁. 基于状态观测器的空间机器人滑模容错控制[J]. 组合机床与自动化加工技术, 2022(6): 110-113+118. XIE Shuai, CHEN Li, YU Xiao-yan. Sliding mode fault tolerant control of space robot based on state observer[J]. Modular Machine Tools And Automatic Processing Technology, 2022(6): 110-113+118. DOI:10.13462/j.cnki.mmtamt.2022.06.025 [6] 林叶春, 黄辉. 基于PLC技术的船舶艏侧推控制系统[J]. 电气自动化, 2009, 31(5): 35-37+41. LIN Ye-chun, HUANG Hui. Ship bow thrusting control system based on PLC technology[J]. Electrical Automation, 2009, 31(5): 35-37+41. DOI:10.3969/j.issn.1000-3886.2009.05.013