﻿ 基于改进共振解调技术的船舶柴油机拉缸磨损分析
 舰船科学技术  2022, Vol. 44 Issue (15): 105-108    DOI: 10.3404/j.issn.1672-7649.2022.15.021 PDF

Wear analysis of marine diesel engine cylinder drawing based on improved resonance demodulation technology
LI Yong
Jiangsu Maritime Institute, Nanjing 211370, China
Abstract: The marine diesel engine is its power source, and its operation reliability is very important for the ship. Due to the complex structure of the diesel engine, there are a large number of friction and matching components. When the diesel engine has abnormal faults such as cylinder pulling, the vibration signal during its operation will be abnormal. The core of this paper is to use the improved resonance demodulation technology and wavelet analysis theory to collect and analyze the vibration signals of marine diesel engine, establish an online vibration monitoring system of marine diesel engine, establish the friction and wear model of diesel engine, and introduce the composition and working principle of online vibration monitoring system of diesel engine in detail.
Key words: diesel engine     resonance demodulation     the cylinder is worn     vibration monitoring
0 引　言

1 机械故障共振解调技术的基础理论研究

 图 1 共振解调技术的振动信号处理流程 Fig. 1 Vibration signal processing flow of resonance demodulation technology

 $G(s) = \frac{{K\dfrac{{{\omega _0}}}{Q}s}}{{{s^2} + \dfrac{{{\omega _0}}}{Q}s + {\omega ^2}}} \text{。}$

 $G(s) \approx \frac{{{{10}^4}Ks}}{{{s^{}} + {{10}^4}s + {{10}^8}}} \text{，}$

 $f(t) = \varepsilon (t) - \varepsilon (t - \tau ) \text{，}$

 $F(s){\text{ }} = \frac{{1 - {e^{ - ts}}}}{s} \text{，}$

 $h(s) = f(s)G(s) = \frac{{1 - {e^{ - ts}}}}{s} \cdot \frac{{{{10}^4}Ks}}{{{s^2} + {{10}^4}s + {{10}^{10}}}} \text{。}$

 $h(s) = Kt \cdot \frac{{{{10}^4}}}{{{s^2} + {{10}^4}s + {{10}^{10}}}} \text{，}$

 $g(t) = Ke\left( {\sin {{10}^5}t - 0.05\cos {{10}^5}t} \right) 。$

 图 2 柴油发动机的脉冲振动信号波形图 Fig. 2 Waveform diagram of pulse vibration signal of diesel engine
2 小波分析理论在振动信号分析中的应用

 $\int\limits_R^{} {} {\left| {\frac{{f\left( \omega \right)}}{\omega }} \right|^2}{\rm{d}}\omega \leqslant \infty \text{。}$

 ${f_s}\left( t \right) = \frac{1}{{\sqrt s }}f\left( {\frac{{t - \alpha }}{s}} \right) \text{。}$

${f_s}\left( t \right)$ 在小波基函数[4]下展开，得到振动信号的小波变换方程为：

 ${F_f}\left( {s,t} \right) = \left\{ {s\left( t \right),f\left( t \right)} \right\} = \frac{1}{{\sqrt s }}\int\limits_{}^{} {s\left( t \right)} f\left( {\frac{{t - \alpha }}{s}} \right){\rm{d}}t 。$

 $F\left( {s,t} \right) = \frac{1}{{{\alpha ^2}}}\int_{ - \infty }^\infty {{F_f}\left( {s,t} \right)} f\left( {\frac{{t - \alpha }}{s}} \right){\rm{d}}t 。$

 图 3 不同伸缩变换取值下带通函数的波形示意图 Fig. 3 Waveform diagram of bandpass function under different values of scaling transformation
3 基于改进共振解调技术的船舶柴油机拉缸磨损分析 3.1 船舶柴油机拉缸磨损力学特性分析

 图 4 柴油机活塞环摩擦过程的受力平衡示意图 Fig. 4 Schematic diagram of force balance of piston ring friction process of diesel engine

 ${F_1} + {F_2} = {F_3} \text{。}$

 ${p_t}(\theta ) = {p_0}\left\{ {n + l\left[ {\frac{1}{2}\left( {{\theta ^2} + {{\sin }^2}\theta } \right) + 2\left( {\cos \theta + {{\cos }^2}\theta } \right)} \right]} \right\} \text{。}$

 $n + 2.593l = 1 。$

3.2 基于改进共振解调的船舶柴油磨损在线监测硬件设计

 图 5 船舶柴油机的拉缸磨损状态监测系统基本逻辑图 Fig. 5 Basic logic diagram of monitoring system for cylinder pulling wear of marine diesel engine

1）服务器

2）工作站

3）串口服务器

4）软件系统

4 结　语

 [1] 孙培廷, 黄连中. 船舶柴油机动力装置与环境的研究[J]. 大连海事大学学报, 2000(1): 1-4. SUN Pei-ting, HUANG Lian-zhong. Research on marine diesel power plant and environment[J]. Journal of Dalian Maritime University, 2000(1): 1-4. DOI:10.3969/j.issn.1006-7736.2000.01.001 [2] 林颖毅, 陈勇. 摩擦磨损对船舶柴油机可靠性的影响分析[J]. 黑龙江科技信息, 2018(12): 44-45. LIN Ying-yi, CHEN Yong. Analysis of the influence of friction and wear on the reliability of marine diesel engine[J]. Heilongjiang Science and technology information, 2018(12): 44-45. [3] 崔韶亮. 船舶柴油机存在的故障研究[J]. 大科技:科技天地, 2011(24): 21-23. CUI Shao-liang. Research on the faults of marine diesel engine[J]. Big science and technology:Science and technology world, 2011(24): 21-23. [4] 宋忠明. 关于提高内燃机车柴油机气缸盖可靠性的问题[J]. 国外机车车辆工艺, 2021(4): 10-15. SONG Zhong-ming. On improving the reliability of cylinder head of diesel locomotive[J]. Foreign locomotive and vehicle technology, 2021(4): 10-15. [5] 李国伍. 船舶柴油机“拉缸”故障振动诊断技术探析[J]. 公安海警学院学报, 2012(4): 5-8. LI Guo-wu. Analysis of vibration diagnosis technology for cylinder pulling fault of marine diesel engine[J]. Journal of Public Security and Marine Police College, 2012(4): 5-8. [6] 宋育强. 船舶柴油机动力装置发展趋势与环境关系的探讨[J]. 探索科学, 2016(5): 173+157. SONG Yu-qiang. Discussion on the relationship between the development trend of marine diesel power plant and the environment[J]. Exploring Science, 2016(5): 173+157.