﻿ 测量无人艇水动力特性数值研究
 舰船科学技术  2022, Vol. 44 Issue (15): 86-91    DOI: 10.3404/j.issn.1672-7649.2022.15.018 PDF

1. 交通运输部 南海航海保障中心广州航标处，广东 广州510320;
2. 天津大学 海洋科学与技术学院，天津 30072

Numerical investigation on hydrodynamics of survey unmanned vehicle
LI Zhong1, CHENG Hong1, WANG Chen-xu2
1. Guangzhou Aids to Navigation Department of Southern Navigation Service Center, Maritime Safety Administration, Guangzhou 510320, China;
2. School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
Abstract: Unmanned vehicles are widely used in marine survey and mapping, which is essential to study it in the future. The hydrodynamics of a small scale and easy-handle unmanned vehicle with inflatable hull was calculated as an example. The governing equations were solved by RANS (Standard k-ε), the three-dimensional model of the vehicle and flow field around it have been built, and the mesh was set up. It was found that this unmanned vehicle performances a better stability when its velocity is 11 kn than 5 kn, thus the balance of the hull can be guaranteed when it is in high speed. The economical velocity is 8 kn as the resistance is smaller in this speed. The results of this study can be used to direct the selecting of the working area and planning of the navigating path of the unmanned vehicles, applied in proving the smooth and endurance of the navigation as well.
Key words: unmanned vehicle     hydrodynamics     CFD     numerical stimulation     marine navigation
0 引　言

1 模型分析

 图 1 测量无人艇 Fig. 1 Multifunctional survey unmanned vehicle

2 无人艇数值分析方法 2.1 控制方程

 ${\rm{div}}\;u=0 ,$ (1)
 $\frac{\partial u}{\partial t}+{\rm{div}}(u \mathop {u}\limits^ \rightharpoonup)=-\frac{1}{\rho}\frac{\partial p}{\partial x}+v\;{\rm{div}} (grad\;u),$ (2)
 $\frac{\partial v}{\partial t}+{\rm{div}}(v \mathop {u}\limits^ \rightharpoonup)=-\frac{1}{\rho}\frac{\partial p}{\partial y}+v\;{\rm{div}} (grad\;v),$ (3)
 $\frac{\partial u}{\partial t}+{\rm{div}}(w \mathop {u}\limits^ \rightharpoonup)=-\frac{1}{\rho}\frac{\partial p}{\partial z}+v\;{\rm{div}} (grad\;w) 。$ (4)

 $\eta = H\cos {\text{(}}mx - \omega t{\text{)}}，$ (5)

 $\left\{ \begin{gathered} U = \omega H{e^{kz}}\cos {\text{(}}mx - \omega t{\text{)}} ，\\ V = 0 ，\\ W = \omega H{e^{kz}}\sin {\text{(}}mx - \omega t{\text{)}}。\\ \end{gathered} \right.$ (6)

 ${S_{PM}}\left( \omega \right){\text{ = }}\frac{{\text{5}}}{{{\text{16}}}}\left( {H_S^{\text{2}}\omega _P^{\text{4}}} \right){\omega ^{{{ - 5}}}}\exp \left( { - \frac{5}{4}{{\left( {\frac{\omega }{{{\omega _P}}}} \right)}^{ - 4}}} \right)。$ (7)

2.2 模型建立

 图 2 计算域 Fig. 2 Computing Domain

 图 3 网格划分 Fig. 3 Grid Division

 图 4 壁面周围网格分布图 Fig. 4 Grid Distribution around the Wall
3 结果分析

3.1 升沉与纵倾

 图 5 船体升沉时域图 Fig. 5 Heave versus time

 图 6 升沉幅度均方根值 Fig. 6 Mean square value of Heave

 图 7 最大升沉幅度 Fig. 7 Maximum heave

 图 8 船体纵倾时域图 Fig. 8 Pitches versus time

 图 9 船体最大纵倾角 Fig. 9 Maximum pitch
3.2 航行阻力

 图 10 航行阻力时域图 Fig. 10 Resistance versus time

 图 11 航行阻力均值图 Fig. 11 Mean value of resistance

4 结　语

1）该结构无人艇具有较好的航行稳定性和穿浪性，可在较高海况下平稳作业，为测绘工作提供良好的作业平台。

2）无人艇在有效波高为0.5 m的海况中航行，航速为5 kn时耗能最低；在有效波高1 m和1.5 m的海况中航行，航速为8 kn时耗能最低；有效波高1.5 m时，航速11 kn时无人艇耗能最高。

 [1] 燕聃聃. 基于吊舱推进的小型水面无人艇航迹控制研究[D]. 武汉: 武汉理工大学, 2017. [2] CAMPBELL S, NAEEM W, IRWIN G W. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres[J]. Annual Reviews in Control, 2012, 36(2): 267-283. DOI:10.1016/j.arcontrol.2012.09.008 [3] MCCUE L. Handbook of Marine Craft Hydrodynamics and Motion Control[J]. IEEE control systems, 2016, 36(1): 78-79. DOI:10.1109/MCS.2015.2495095 [4] 王保明. 一种水面无人艇艇型概念设计及综合性能优化分析[D]. 镇江: 江苏科技大学, 2014. [5] 霍聪, 董文才. 潜伏式高速无人船型变航态航行试验[J]. 上海交通大学学报, 2016, 50(8): 1180-1185. [6] 魏成柱, 李英辉, 易宏. 穿浪船船型及相关研究综述[J]. 中国舰船研究, 2016, 11(5): 1-8. [7] 陶文冬. 英国长航时无人水面艇C-Enduro投入科研任务[EB/OL]. http://tech.huanqiu.com/news/2015-08/7330746.html?agt=15438, 2015. [8] CACCIA M, BIBULI M, BONO R, et al. Charlie, A testbed for USV research[C]. Proceedings of the 8th International IFAC Conference on Manoeuvring and Control of Marine Craft, Guaruja(SP), Brazil: IFAC Secretariat, 2009: 97-102. [9] NAEEM W, IRWIN G W, YANG A. COLREGs-based collision avoidance strategies for unmaned surface vehicles[J]. Mechatronics, 2012, 22(6): 669-678. DOI:10.1016/j.mechatronics.2011.09.012 [10] MAJOHR J, BUCH T. Modelling, simulation and control of an autonomous surface marine vehicle for surveying applications measuring dolphin MESSIN[M]. Advances in Unmanned Marine Vehicles. UK: The Institution of Electrical Engineers. 2006. [11] MATINS A, ALMEIDA J M, FERREIRA H, et al. Autonomous surface vehicle docking manoeuvre with visual information[C]. Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy: IEEE, 2007: 4994-4999. [12] 杨显原, 吴家鸣, 李林华. 基于最小阻力的双体无人船优化设计[J]. 舰船科学技术, 2018(15): 5. [13] QIAN P, YI H, LI Y. Numerical and experimental studies on hydrodynamic performance of a small-waterplane- area-twin-hull (SWATH) vehicle with inclined struts[J]. Ocean Engineering, 2015, 96: 181-191. DOI:10.1016/j.oceaneng.2014.12.039 [14] 郭春雨, 阙梓, 赵大鹏, 等. 计及船体姿态变化的水池阻塞效应数值研究[J]. 哈尔滨工程大学学报, 2016(12): 1619-1624. [15] LEE T, et al. Energy efficient path planning for a marine surface vehicle considering heading angle[J]. Ocean Engineering, 2015, 107: 118-131. DOI:10.1016/j.oceaneng.2015.07.030 [16] MA Y, M Hu, X Yan. Multi-objective path planning for unmanned surface vehicle with currents effects[J]. ISA Transactions, 2018, 75: 137-156. DOI:10.1016/j.isatra.2018.02.003