﻿ 不同工况下船舶与小型冰山碰撞数值模拟分析
 舰船科学技术  2022, Vol. 44 Issue (15): 49-54    DOI: 10.3404/j.issn.1672-7649.2022.15.011 PDF

Numerical simulation analysis of collision between ship and small iceberg under different working conditions
LI Dan, SHI Xiao, SUN Wei
Qingdao Huanghai University, Qingdao 266427, China
Abstract: There are a large number of icebergs in the arctic navigation area, and ships often encounter collisions with icebergs. Based on operational safety considerations, the study focuses on the collision response calculation and damage analysis of the ship-small iceberg in the arctic navigation area. The finite element model of the hull and small icebergs is established by using Ansys/LS-DYNA software, and the numerical simulation analysis of both collisions is carried out. By controlling the ship speed, tonnage, impact angle and other factors, the damage and deformation of various components of the ship's hull and small icebergs, as well as the energy history curve of ship stern structure and the time curve of impact force are obtained in the LS-PrePost post-processing. Contrastive analysis and discussion were conducted on the results to obtain the conclusions of the collision between the ship and the iceberg.
Key words: ships     small iceberg     collision     Ansys/LS-DYNA
0 引　言

1 船舶-冰山有限元模型

 图 1 船舶—冰山碰撞有限元模型 Fig. 1 Finite element model of ship iceberg collision
2 不同工况下船舶与小型冰山碰撞分析

2.1 船舶速度的影响

 图 2 不同船速下肋板等效应力云图 Fig. 2 Stress nephogram of rib plate under different ship speeds

 图 3 不同船速下平台等效应力云图 Fig. 3 Stress nephogram of platform under different ship speeds

 图 4 不同船速下外板等效应力云图 Fig. 4 Stress nephogram of outer plate under different ship speeds

 图 5 不同船速下碰撞力曲线图 Fig. 5 Collision force curves under different ship speeds
2.2 船舶吨位的影响

 图 6 不同吨位下各构件等效应力云图 Fig. 6 Stress nephogram of each component under different tonnage
2.3 碰撞角度的影响

 图 7 不同碰撞角度下肋板等效应力云图 Fig. 7 Equivalent nephogram of rib plate under different collision angles

 图 9 不同碰撞角度下外板变形损伤图 Fig. 9 Stress nephogram of outer plate under different collision angles

 图 8 不同碰撞角度下平台等效应力云图 Fig. 8 Stress nephogram of platform under different collision angles

 图 10 不同碰撞角度下碰撞力曲线图 Fig. 10 Collision force curves under different collision angles

3 结　语

1）在所研究的北极航区中，通过设定相关参数后模拟分析的结果可知，船舶速度越大，船首产生的碰撞力越大，耗散的能量越多，其船首各构件的损伤程度越严重，因此碰撞过程中尽量减小船速（最好降至服务航速以下），可以很大程度上缓解船首的损伤程度。

2）船舶与小型冰山发生碰撞过程中，船舶吨位越大，所耗散的能量越多，船首损伤变形的程度越严重，因此为了能够更好地研究船舶-小型冰山碰撞响应计算及损伤分析，选取在合适范围内的船舶吨位较大，效果较好。同时也证明了在北极航区的规定范围内，吨位较小船舶的船首损伤程度较低。

3）在发生碰撞的过程中，不同的碰撞角度所产生的碰撞效果有所不同，由于冰山尺寸的限制，船舶偏移角度越大，其碰撞面积越小，耗散的能量越少，产生的碰撞力越小，船舶损伤程度逐渐减小，因此碰撞过程中适当增加碰撞角度（控制在60°以内），可以缓解船首的损伤程度。

4）船舶-小型冰山碰撞的碰撞力曲线呈现高度的非线性，局部会出现明显的极值点。

 [1] 张东江. 北极航区分析及极区船舶总体性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [2] 王传荣. 冰区LNG船未来发展方向[J]. 船舶物资与市场, 2010, 18(5): 15-17. [3] 王钰涵. 破冰船破冰载荷及运动预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [4] 王译鹤, 岳前进. 直立柔性窄结构上的海冰挤压同时破坏[J]. 哈尔滨工程大学学报, 2014, 35(8): 982-986. [5] 陈聪, 张健. 冰载荷作用下船舶耐撞性能研究进展[J]. 中外船舶科技, 2014, 27(1): 18-23. [6] 王钰涵, 李辉, 任慧龙. 连续破冰模式下破冰船的冰力研究[J]. 海洋工程, 2013, 31(4): 68-73. [7] GAGNON R E. A numerical model of ice crushing using a foam analogue[J]. Cold Regions Science & Technology, 2011, 65(3): 335-350. [8] LIU Z, AMDAHL J, LØSET S. Plasticity based material modelling of ice and its application to ship–iceberg impacts[J]. Cold Regions Science & Technology, 2011, 65(3): 326-334. [9] MYHRE S A. Analysis of accidental iceberg impacts with membrane tank LNG carriers[J]. Department of Marine Technology, 2010, 36(6): 106-112. [10] DAHL K A. Analysis of accidental iceberg impacts with LNG tank carriers[J]. 2012, 32(4): 69-78.