﻿ 特大型水面高速船流场阻力特性仿真
 舰船科学技术  2022, Vol. 44 Issue (15): 41-44    DOI: 10.3404/j.issn.1672-7649.2022.15.009 PDF

1. 中国船舶集团有限公司第七〇七研究所九江分部，江西 九江 332005;
2. 中国舰船研究设计中心，湖北 武汉 430064

Numerical research on resistance characteristics of flow of super large suface high-speed ship
LUO Xin1, YU Da-hai2, CHEN Huan2, ZHU Yi-lin2
1. Jiujiang Branch of the 707 Research Institute of CSSC, Jiujiang 332005, China;
2. China Ship Develop and Design Center, Wuhan 430064, China
Abstract: For the super-large surface high-speed ship, the STAR-CCM+ numerical simulation software is used to calculate the flow field characteristics when it is sailing in still water at different speeds and different sideslip angles, and to obtain its fluid resistance change law and the flow field distribution characteristics around the ship. Relative to the test results, the relative deviation of the total resistance calculated by the numerical value does not exceed 4%, and the relative deviation of the friction resistance does not exceed 1.5%. When sailing directly at different speeds, the total resistance of the flow field on the hull is directly proportional to the speed. When skewing at different speeds, the lateral force coefficient of the hull both increase with the increase of the heading angle. The research results can provide a certain reference for the design of the same type of ships.
Key words: flow field charcateristics     numerical simulation     ship resistance
0 引　言

Deng等[3]研究了流域网格参数对双体船阻力特性的影响，得到了在计算双体船阻力特性时双体船表面网格尺寸、y+、流域网格分布规律的选取标准，并通过与实验数据对比验证了数值模型及计算结果的合理性。在研究自由液面航行的高速船体流体动力时，通常采用基于VOF多流体模型和雷诺时均的N-S方程（RANS）处理自由液面，为了加速计算的收敛性及计算速度，Alban等[4]提出了2种数值控制策略，可在保证计算精度的前提下提高约4倍的计算速度。刘富强等[5]基于STAR-CCM+流体计算软件对小尺度回转体静水面滑行进行了数值模拟，得到了航速及浸没深度对航行体流体动力特性的影响。

1 数值模型的建立

 $\dfrac{\partial }{\partial t}\left(\rho \kappa \right)+\dfrac{\partial }{\partial {x}_{i}}\left(\rho \kappa {u}_{i}\right)=\dfrac{\partial }{\partial {x}_{j}}\left({\mathrm{\varGamma }}_{\kappa }\dfrac{\partial \kappa }{\partial {x}_{j}}\right)+{G}_{\kappa }-{Y}_{\kappa }+{S}_{\kappa } ，$ (2-1)
 $\dfrac{\partial }{\partial t}\left(\rho \omega \right)+\dfrac{\partial }{\partial {x}_{i}}\left(\rho \omega {u}_{i}\right)=\dfrac{\partial }{\partial {x}_{j}}\left({\mathrm{\varGamma }}_{\omega }\dfrac{\partial \omega }{\partial {x}_{j}}\right)+{G}_{\omega }-{Y}_{\omega }+{S}_{\omega }。$ (2-2)

2 数值模型验证

3 计算模型及仿真过程 3.1 船体模型

 图 1 船模示意图 Fig. 1 Schematic diagram of ship model

3.2 计算域及网格划分

 图 2 计算域模型 Fig. 2 Computation domain model
4 仿真结果 4.1 水面兴波特性

 图 3 水面兴波特性云图 Fig. 3 Wave characteristics of model
 $\lambda =\frac{2\text{π} {v}^{2}}{g} 。$ (5-1)

 $mL=n\lambda +q\lambda 。$ (5-2)

4.2 阻力特性

 图 4 阻力系数与航速关系 Fig. 4 Drag coefficient of model

 图 5 阻力与航速关系 Fig. 5 Resistance of model

 图 6 摩擦阻力占比 Fig. 6 Friction resistance ratio of model

4.3 侧向力及力矩特性

 图 7 侧向力系数与航速关系 Fig. 7 Lateral force coefficient

 图 8 侧向力矩系数与航速关系 Fig. 8 Lateral torque coefficient
5 结　语

1）获得了不同航速下流场兴波变化特性，对比理论计算和数值仿真，发现航速为20 kn时，船体受兴波阻力影响最小；

2）随着航速的增大以兴波阻力为主的黏压阻力的逐渐增加，使得船舶总航行阻力逐渐增大，且其中摩擦阻力占比逐渐减小；

3）随着船舶航向角的增加船体周围压力场分布规律会发生显著变化，导致船舶所受侧向力与侧向力矩随之增大，其主要由于船体周围压力场的变化引起。

 [1] NI Z, DHANAK M, SU T. Performance of a hydrofoil operating close to a free surface over a range of angles of attack[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 1-11. DOI:10.1016/j.ijnaoe.2020.11.002 [2] 张明霞, 韩兵兵, 卢鹏程, 等. 基于STAR CCM+的小水线面三体船阻力数值仿真[J]. 中国舰船研究, 2018, 13(4): 79-85. [3] DENG R, HUANG D. Discussion of grid generation for catamaran resis- tance calculation[J]. Journal of Marine Science and Application, 2010, 9(2): 187-191. DOI:10.1007/s11804-010-9080-2 [4] ALBAN L, Jeroen Wa. Numerical strategies to speed up cfd computa-tions with free surface-application to the dynamic equilibrium of hulls[J]. Ocean Engineering, 2011, 38(17): 2070-2076. [5] 刘富强, 罗凯, 梁红阁, 等. 回转体滑水航行流体动力特性研究[J]. 西北工业大学学报, 2021, 39(1): 101-110. DOI:10.3969/j.issn.1000-2758.2021.01.013 [6] 周广利, 艾子涛, 邓锐, 等. 基于CFD的三体船侧体布局阻力研究[J]. 船舶工程, 2015, 37(1): 27-30. [7] OULD M, VLADIMIR S, TOBIAS Z. Dusiburg test case: postpanamax container ship for bench- marking [C]. Ship Technology Research Schiffstechnik 2012, 59(3): 50-64.