﻿ 接触式水下爆炸冲击波对船舶结构毁伤的数值模拟
 舰船科学技术  2022, Vol. 44 Issue (15): 12-15    DOI: 10.3404/j.issn.1672-7649.2022.15.003 PDF

Numerical simulation of damage to ship structure by contact underwater explosion shock wave
WANG Yang
Faculty of Computer and Information Technology, Wuhan Institute of Shipbuilding Technology, Wuhan 430050, China
Abstract: When a ship is traveling on the water surface, if an explosion occurs underwater, the resulting shock wave will cause a certain degree of damage to the main structure of the ship. The far-field underwater explosion usually causes local plastic deformation of the ship, while the contact-type underwater explosion may break the hull, which is one of the important reasons for the overturning of the ship. In order to further clarify the damage of the contact underwater explosion shock wave to the ship structure, an appropriate algorithm can be selected, and the damage results can be obtained by means of numerical simulation, which can provide a reference for the ship shock resistance design. This has important practical significance for improving the overall performance of the ship structure.
Key words: underwater explosion     shock wave     ship structure damage     numerical simulation
0 引　言

1 水下爆炸冲击波载荷的计算方法

1.1 爆轰过程

1.2 冲击波载荷

1.3 气泡脉动与空化

1）气泡脉动

 图 1 气泡收缩膨胀及上浮示意图 Fig. 1 Schematic diagram of bubble contraction, expansion and floating

2）空化效应

 图 2 水下发生爆炸后水面上产生的空化区域示意图 Fig. 2 Schematic diagram of cavitation area on water surface after underwater explosion
1.4 声结构耦合法

2 接触式水下爆炸冲击波对船舶结构毁伤的数值模拟

2.1 声结构耦合法与ALE算法的数值模拟

2.2 数值方法验证

2.3 船体结构毁伤模式分析

 图 3 比例距离为1.0 m·kg−1/3时的数值仿真结果与计算结果对比曲线 Fig. 3 Comparison curve between numerical simulation results and calculation results when the proportional distance is 1.0 m·kg−1/3

 图 4 比例距离为1.5 m·kg−1/3时的冲击波能量耗散曲线 Fig. 4 Shock wave energy dissipation curve results when the proportional distance is 1.5 m·kg−1/3

 $\Delta {P_f} = (1 + \cos \varphi )\Delta {P_m} + {P_0}{\cos ^2}\varphi \text{。}$

 图 5 不同角度下的冲击压力数值模拟结果对比曲线示意图 Fig. 5 Schematic diagram of the comparison curves of the numerical simulation results of impact pressure at different angles

 图 6 塑性应变压力随时间变化曲线 Fig. 6 Plastic strain pressure versus time curve

3 结　语

 [1] 彭玉祥, 张阿漫, 薛冰, 等. 强冲击作用下舰船结构毁伤的三维无网格SPH-RKPM方法数值模拟[J]. 中国科学:物理学 力学 天文学, 2021(12): 150-153. PENG Yu-xiang, ZHANG A-man, XUE Bing, et al. 3D meshless SPH-RKPM numerical simulation of ship structural damage under strong impact[J]. Science in China:Physics, Mechanics and Astronomy, 2021(12): 150-153. [2] 焦晓龙, 赵鹏铎, 姚养无, 等. 基于仿真与量纲分析的不同药量TNT内爆下多舱室结构毁伤规律研究[J]. 爆炸与冲击, 2020(8): 124-133. JIAO Xiao-long, ZHAO Peng-duo, YAO Yang-wu, et al. Research on damage law of multi-compartment structures under different doses of TNT implosion based on simulation and dimensional analysis[J]. Explosion and Shock, 2020(8): 124-133. DOI:10.11883/bzyjc-2019-0438 [3] 王玉, 王树山, 李文哲, 等. 半穿甲炮弹对小型舰船目标毁伤效能评估研究[J]. 火炮发射与控制学报, 2021(1): 42-48,53. WANG Yu, WANG Shu-shan, LI Wen-zhe, et al. Evaluation of damage effectiveness of semi-armor-piercing shells on small ships[J]. Journal of Artillery Launch and Control, 2021(1): 42-48,53. DOI:10.19323/j.issn.1673-6524.2022.01.007 [4] 黄化人. 基于数理统计的水面舰船目标毁伤效能计算[J]. 舰船科学技术, 2021(24): 19-21. HUANG Hua-ren. Calculation of target damage effectiveness of surface ships based on mathematical statistics[J]. Ship Science and Technology, 2021(24): 19-21. [5] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述[J]. 爆炸与冲击, 2020(11): 15-39. JIN Jian, ZHU Xi, HOU Hai-liang, et al. A review of damage and protection of large ships under underwater contact explosion[J]. Explosion and Shock, 2020(11): 15-39. DOI:10.11883/bzycj-2020-0105 [6] 刘文思, 吴林杰, 侯代文, 等. 鱼雷近场爆炸对舰船不同结构的局部毁伤研究[J]. 兵器装备工程学报, 2019(10): 12-15. LIU Wen-si, WU Lin-jie, HOU Dai-wen, LI Hai-tao. Research on local damage to different structures of ships caused by near-field torpedo explosions[J]. Chinese Journal of Weaponry and Equipment Engineering, 2019(10): 12-15. DOI:10.11809/bqzbgcxb2019.10.003