﻿ 船舶海上航行推进轴瞬态扭转振动响应研究
 舰船科学技术  2022, Vol. 44 Issue (14): 44-47    DOI: 10.3404/j.issn.1672-7649.2022.14.010 PDF

Research on transient torsional vibration response of ship propulsion shaft at sea
ZHANG Bo
Jiangsu Branch of China Classification Society, Nanjing 210011, China
Abstract: The internal combustion engine is an important power device of a ship, and once it fails, it will affect the normal navigation of the ship. After analyzing the reasons for the failure of the internal combustion engine of the ship, it is found that the torsional vibration of the propulsion shaft is one of the main reasons for the failure of the internal combustion engine. When the torsional vibration of the propulsion shaft occurs, as the torsional vibration continues to intensify, the crankshaft, propeller shaft and other bearings will be broken, the gears will be worn, and the couplings will be damaged, which will seriously affect the safety of the ship's navigation. In order to ensure that the ship can sail safely and stably at sea, it is necessary to increase the research on the transient torsional vibration response of the propulsion shaft. In the specific analysis process, the finite element analysis software is selected, and the solid model is constructed, and the main influencing factors are obtained through the analysis, which provides a reference for the vibration reduction design.
Key words: ship     propulsion shaft     torsional vibration
0 引　言

1 船舶推进轴扭转振动有限元分析

2 船舶海上航行推进轴瞬态扭转振动响应 2.1 选择实体模型

 图 1 船舶推进轴系整体建模与轴承建模及约束条件有限元实体模型 Fig. 1 Integral modeling and bearing modeling of marine propulsion shafting and finite element solid model of constraints
2.2 推进轴振动

 $SNR = 10\log \frac{{{P_s}}}{{{P_n}}} 。$

 $SNR = 10\log \frac{{{P_s}}}{{{P_n}}} = {2^N}\sqrt {\frac{3}{2}} \approx \left( {6.02 \cdot N + 1.76} \right){\rm{dB}} 。$

 $SNR = {2^N}\sqrt {\frac{3}{2}} \cdot \sqrt {OSR} 。$
2.3 谐响应分析

 图 2 船舶推进轴系中螺旋桨振幅随时间变化曲线示意图 Fig. 2 Schematic diagram of the variation curve of propeller amplitude with time in ship propulsion shafting
2.4 影响因素

 图 3 推进轴阻尼比为0.05时第一质量振动变化曲线示意图 Fig. 3 Schematic diagram of the first mass vibration change curve when the propulsion shaft damping ratio is 0.05

 图 4 船舶柴油机曲轴轴系发火不均匀时各气缸的振幅值 Fig. 4 Amplitude value of each cylinder in case of uneven ignition of crankshaft shafting of marine diesel engine

 图 5 柴油机曲轴不同算法下的转动惯量曲线示意图 Fig. 5 Schematic diagram of moment of inertia curve of diesel engine crankshaft under different algorithms

 图 6 调距桨第一质量下振幅与转速曲线示意图 Fig. 6 Schematic diagram of amplitude and speed curve of controllable pitch propeller under the first mass

 图 7 船舶拖轮轴系螺旋桨螺距1 阶 4 谐次共振转速曲线 Fig. 7 1st order 4th harmonic resonance speed curve of propeller pitch of ship tug shafting

3 结　语

 [1] 温小飞, 蔡保刚, 王杏娣. 周期性载荷作用下船舶推进轴系运行状态的数值仿真[J]. 中国航海, 2021, 44(3): 13-19. DOI:10.3969/j.issn.1000-4653.2021.03.003 [2] 周凌波, 段勇, 孙玉东, 等. 船体纵横倾对推进轴系支撑轴承润滑动特性的影响[J]. 舰船科学技术, 2021, 43(1): 23-27. [3] 赵含, 杨志荣, 塔娜, 等. 基于准零刚度隔振器的船舶推进轴系纵向减振研究[J]. 振动与冲击, 2020, 39(23): 90-95. [4] 张赣波, 席敬波. 基于连续-离散混合模型的船舶推进轴系纵向振动动力吸振分析[J]. 船舶工程, 2020, 42(7): 9-14. [5] 肖能齐, 陈保家, 徐翔, 等. 基于冰载荷动态激励的船舶推进轴系瞬态振动计算研究[J]. 船舶力学, 2020, 24(3): 390-399. [6] 张涵, 万振刚. 基于压缩感知与VMD的船舶推进轴系轴承振动故障分析[J]. 舰船电子工程, 2020, 40(1): 157-161. DOI:10.3969/j.issn.1672-9730.2020.01.037 [7] 李小军, 朱汉华, 范世东, 等. 船舶艉轴承刚度和螺旋桨陀螺效应对轴系回旋振动特性影响的分析[J]. 船舶力学, 2019(7): 851-858. DOI:10.3969/j.issn.1007-7294.2019.07.011