﻿ 管路弹性密封穿舱结构设计研究
 舰船科学技术  2022, Vol. 44 Issue (14): 30-34    DOI: 10.3404/j.issn.1672-7649.2022.14.007 PDF

1. 中国人民解放军92578部队，北京 100161;
2. 福州大学 机械工程及自动化学院，福建 福州 350108

Design of pipe element passing through bulkhead with elastic seal installation
YANG Pei1, ZHOU Tao1, JIA Di1, QIN Zhi-qiang2, WU Yi-wan2
1. No. 92578 Unit of PLA, Beijing 100161, China;
2. School of Mechanical Engineering, Fuzhou University, Fuzhou 350108, China
Abstract: To reduce the transmission of vibration energy from the ship’s pipeline system to the bulkhead, a new type of pipe element passing through bulkhead with elastic seal installation was designed. This pipe element passing through bulkhead uses metal bellows as elastic element and metal rubber as damping element, and adopts seam welding technology to achieve sealing requirements. The insertion loss was used as the evaluation index of vibration reduction effect. The finite element method was used to analyze the strength and vibration isolation effect of the pipe element passing through bulkhead structure. The results show that compared with the rigid pipe element passing through bulkhead structure, the vibration isolation effect of the pipe element passing through bulkhead with elastic seal installation is obvious, and the average insertion loss in all directions is 25.4 dB, and the resonance frequency and formant of the pipe element passing through bulkhead structure are significantly reduced.
Key words: elastic pipe element passing through the bulkhead     metal bellows     metal rubber     vibration isolation.
0 引　言

1 弹性穿舱方案设计

 图 1 弹性密封穿舱结构方案 Fig. 1 Elastic seal through cabin structure scheme

2 穿舱结构有限元建模

 图 2 模型网格划分图 Fig. 2 Model grid division diagram

3 穿舱结构强度与模态分析 3.1 强度分析

 图 3 结构强度应力云图 Fig. 3 Structural strength stress nephogram

3.2 模态分析

4 减振性能分析

 $Z = 20\lg (a) + 120,$ (1)
 $IL = {Z_g} - {Z_c}。$ (2)

4.1 径向激励时穿舱结构的减振分析

 图 4 X方向加速度幅频响应曲线 Fig. 4 Amplitude frequency response curve of acceleration in X direction

 图 5 Y方向加速度幅频响应曲线 Fig. 5 Amplitude frequency response curve of acceleration in Y direction

 图 6 Z方向加速度幅频响应曲线 Fig. 6 Amplitude frequency response curve of acceleration in Z direction

4.2 轴向激励时穿舱结构的减振分析

 图 7 X方向加速度幅频响应曲线 Fig. 7 Amplitude frequency response curve of acceleration in X direction

 图 8 Y方向加速度幅频响应曲线 Fig. 8 Amplitude frequency response curve of acceleration in Y direction

 图 9 Z方向加速度幅频响应曲线 Fig. 9 Amplitude frequency response curve of acceleration in Z direction

5 结　语

1）弹性穿舱结构具有良好的位移补偿及抗冲击性能。

2）无论在何种载荷的作用下，Z方向（轴向）的加速度响应信号最大，X方向（径向）次之，Y方向（切向）最小，弹性穿舱结构加速度响应信号最大量级为10−4 m/s2

3）与刚性结构相比，添加减振装置后，结构整体减振效果明显，各方向平均插入损失最大为25.4 dB。同时，弹性穿舱结构的共振频率与共振峰

 [1] 徐娇. 通舱管件冷却水套热固耦合分析[D]. 哈尔滨: 哈尔滨工程大学, 2013. [2] 彭云飞, 何海洋, 黎申, 等. 管路弹性穿舱件减振机理研究及仿真分析[J]. 舰船科学技术, 2011, 33(8): 119-122. DOI:10.3404/j.issn.1672-7649.2011.08.026 [3] 尹喜庆, 金翔, 刘土光, 等. 弹性通舱管件的工艺性能分析[J]. 船舶工程, 2010, 32(S2): 112-116. [4] 潘国雄, 靖红顺, 刘土光. 安装偏差对弹性通舱管件隔振性能的影响试验[J]. 舰船科学技术, 2011, 33(4): 48-54. DOI:10.3404/j.issn.1672-7649.2011.04.008 [5] 靖红顺, 胡毅, 刘土光. 具有安装偏差的弹性通舱管件隔振性能仿真分析[J]. 船海工程, 2011, 40(3): 24-25. DOI:10.3963/j.issn.1671-7953.2011.03.007 [6] 胡德芳, 金翔, 刘土光, 等. 弹性通舱管件设计研究[J]. 中国造船, 2011, 52(2): 146-153. DOI:10.3969/j.issn.1000-4882.2011.02.018 [7] 沈正帆, 吴声敏, 张瑶, 等. 基于有限元仿真的隔振通舱管件设计[J]. 舰船科学技术, 2013, 35(12): 73-77. DOI:10.3404/j.issn.1672-7649.2013.12.016 [8] 李光磊. 高温高压通舱管件的降温与减振设计[D]. 哈尔滨: 哈尔滨工程大学, 2012. [9] 邱大芦. 海水系统通舱管件的动力学分析[D]. 哈尔滨: 哈尔滨工程大学, 2012. [10] 熊纪宇. 弹性穿舱隔振装置设计与试验研究[D]. 武汉: 华中科技大学, 2019. [11] 马聪博. 金属橡胶剪切及振动力学特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.