﻿ 薄壁圆柱壳体结构在非对称周向载荷下响应分析
 舰船科学技术  2022, Vol. 44 Issue (14): 21-25    DOI: 10.3404/j.issn.1672-7649.2022.14.005 PDF

1. 中国船舶集团有限公司第七一三研究所，河南 郑州 450015;
2. 河南省水下智能装备重点实验室，河南 郑州 450015

Response analysis of thin-walled cylindrical shell structure under asymmetrical circumferential load
WANG Xi-meng1,2, JING Hui-xiang1,2, LI Zhi-tao1,2, MA Yong1,2, QIN Li-ping1,2
1. The 713 Research Institute of CSSC, Zhengzhou 450015, China;
2. Henan Key Laboratory of Underwater Intelligence Equipment, Zhengzhou 450015, China
Abstract: In order to study the influence of the thin-walled cylindrical shell on the motion trajectory of the submarine launched vehicle, two simulation calculation models are proposed based on the dynamic characteristics models based on the submarine launched vehicle in the process of out of cylinder. Through comparison, it can be found that the two-dimensional model only describes the change of the cylinder centroid displacement, while the three-dimensional model can not only consider the asymmetric load, but also the circumferentially symmetric gas pressure. The three-dimensional simulation result can more accurately predict the deformation. The research of this paper have guiding significance for the subsequent simulation on the dynamic characteristics of the submarine launched vehicle.
Key words: thin walled cylindrical shell structure     dynamic load     asymmetric distribution
0 引　言

1 动力学计算方法 1.1 结构模型

 图 1 水下航行体整体结构图 Fig. 1 The overall structure of the underwater vehicle

 图 2 结构剖面图 Fig. 2 Structure section view
1.2 求解原理

1.3 动力学理论

 ${\boldsymbol{M}}\ddot {\boldsymbol{X}} + {\boldsymbol{C}}\ddot {\boldsymbol{X}} + {\boldsymbol{K}}{\boldsymbol{X}} = {\boldsymbol{F}}\left( t \right)。$ (1)

 ${\boldsymbol{C}} = \alpha {\boldsymbol{M}} + \beta {\boldsymbol{K}}。$ (2)

 ${\omega _i} = 2 \text{π} {f_i} ，$ (3)
 ${\xi _i} = \frac{\alpha }{{2{\omega _i}}} + \frac{{\beta {\omega _i}}}{2}。$ (4)

 $\beta = 2{\xi _i}/{\omega _i}。$ (5)

2 二维模型仿真计算 2.1 二维计算模型

 图 3 二维仿真模型 Fig. 3 Two-dimension simulation model

2.2 二维仿真结果

 图 4 二维仿真各圈橡胶垫处筒体最大位移 Fig. 4 Two-dimensional simulation of the maximum displacement of the cylinder at each ring rubber mat

3 三维模型仿真计算 3.1 三维计算模型

 图 5 三维仿真模型 Fig. 5 Three-dimension simulation model

3.2 三维仿真结果

 图 6 筒体真实变形图 Fig. 6 Real deformation diagram of the cylinder

 图 7 筒体挠度变形图 Fig. 7 Deflection diagram of cylinder

 图 8 第2圈橡胶垫处筒体变形轮廓 Fig. 8 Deformation contour of cylinder at the second ring of rubber mat

 图 9 第3圈橡胶垫处筒体变形轮廓 Fig. 9 Deformation contour of cylinder at the third ring of rubber mat
4 仿真方法对比

 图 10 筒体挠度变形对比 Fig. 10 Comparison in deflection of cylinder

 图 11 筒体应力云图 Fig. 11 Stress diagram of cylinder

5 结　语

1）由于水下航行体出筒过程中筒体变形是一个典型动态变形过程，阻尼对结果影响很大；二维采用线性弹簧加上阻尼进行描述，三维通过材料的瑞利阻尼进行描述，两者存在差异。

2）二维仿真方法仅考虑了橡胶垫产生的非对称周向载荷，而三维仿真方法添加了筒内的均布周向压力载荷，因此三维模型分析得出的内筒变形及VonMises应力大于二维模型分析结果。

3）用三维模型橡胶垫处横截面的变形量平均值，作为挠度描述筒体的变形，三维挠度变形和二维挠度变形计算结果相当。

4）二维仿真模型可以描述筒体形心挠度变形，三维模型可以具体描述出筒体局部的变形模式。与之对应，三维仿真所需的计算资源远大于二维仿真。

5）在工程设计中，可以通过二维仿真方法对筒体的变形程度进行初步评估，再通过三维仿真模型进行具体的工况分析。

 [1] MORROCCO J D. Second Trident 2 test failure points to vehicle design flaw[J]. Aviation Week, 1989(8): 21-26. [2] JEANS TL, BAKER CR, HOLLOWAY AGL, et al. A critical review of classical force estimation methods for streamlined underwater vehicles using experimental and CFD data[J]. Proceedings of the ASME Fluids Engineering Division Summer Conference, 2005(1): 139-148. [3] 乐光明. 潜射导弹出水姿态与载荷特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2011. [4] 尚书聪, 张宇文, 袁绪龙. 导弹水下动机座垂直发射过程的水动力计算[J]. 舰船科学技术, 2009, 31(9): 56-60. DOI:10.3404/j.issn.1672-7649.2009.09.008 [5] 姜百川. 水下航行体发射过程动力学特性及载荷分析[D]. 哈尔滨: 哈尔滨工业大学, 2012. [6] 李代金, 张宇文, 党建军, 等. 潜艇垂射导弹出筒姿态的研究[J]. 弹箭与制导学报, 2009, 29(4): 171-173+178. DOI:10.3969/j.issn.1673-9728.2009.04.049 [7] 王英华. 轴向载荷对潜射导弹横向振动特性影响分析[J]. 导弹与航天运载技术, 2002(6): 9-15. DOI:10.3969/j.issn.1004-7182.2002.06.003