﻿ 复合材料无人艇在近场水下爆炸载荷下的动态响应研究
 舰船科学技术  2022, Vol. 44 Issue (14): 1-5    DOI: 10.3404/j.issn.1672-7649.2022.14.001 PDF

Research on dynamic response of composite unmanned boat under near-field underwater explosion load
LI Yong-zheng, ZHU Yun-di
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: Aiming at the carbon fiber composite material unmanned boat, this paper carried out the research on the dynamic response of the composite material boat under the near-field underwater non-contact explosion load. Based on the numerical calculation of the dynamic response of the hull under different upset compartments, the stress and damage characteristics of the hull after the impact are analyzed. The impact of the near-field non-contact underwater explosion on the carbon fiber composite material unmanned boat is revealed, which provides a reference for the subsequent research on the optimization of the anti-blast performance of the composite material boat.
Key words: composite material     unmanned boat     underwater explosion
0 引　言

1 相关理论

1.1 水下爆炸理论

 $Z = \frac{r}{{\sqrt[3]{{{m_e}}}}}。$ (1)

 ${t_ + } = {10^{ - 4}}{Z^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}{m_e}^{{1 \mathord{\left/ {\vphantom {1 3}} \right. } 3}}，$ (2)
 ${P_m} = k{Z^{ - \alpha }} ，$ (3)
 $i = l{Z^{ - \beta }} \cdot {m_e}^{{1 \mathord{\left/ {\vphantom {1 3}} \right. } 3}}，$ (4)
 $\theta = \frac{l}{k}{Z^{\alpha - \beta }}{m_e}^{{1 \mathord{\left/ {\vphantom {1 3}} \right. } 3}}，$ (5)
 $E = \varGamma {Z^{ - \gamma }}{m_e}^{{1 \mathord{\left/ {\vphantom {1 3}} \right. } 3}}。$ (6)

 $p = A\left(1 - \frac{{\omega \eta }}{{{R_1}}}\right){e^{ - \frac{{{R_1}}}{\eta }}} + B\left(1 - \frac{{\omega \eta }}{{{R_2}}}\right){e^{ - \frac{{{R_2}}}{\eta }}} + \omega \eta {\rho _0}e 。$ (7)

1.2 复合材料层合板失效理论

 ${\left( {\frac{{{\sigma _{11}}}}{{{X_T}}}} \right)^2} + {\left( {\frac{{{\sigma _{12}}}}{S}} \right)^2} \geqslant 1 \,\, \left( {{\sigma _{11}} > 0} \right) 。$ (8)

 $\left| {{\sigma _{11}}} \right| \geqslant {X_C} \,\, \left( {{\sigma _{11}} < 0} \right)。$ (9)

 ${\left( {\frac{{{\sigma _{22}}}}{{{Y_T}}}} \right)^2} + {\left( {\frac{{{\sigma _{12}}}}{S}} \right)^2} \geqslant 1 \,\, \left( {{\sigma _{22}} > 0} \right)。$ (10)

 ${\left( {\frac{{{\sigma _{22}}}}{{2S}}} \right)^2} + \left[ {{{\left( {\frac{{{Y_C}}}{{2{S_T}}}} \right)}^2} - 1} \right]\frac{{{\sigma _{22}}}}{{{Y_C}}} + {\left( {\frac{{{\sigma _{12}}}}{S}} \right)^2} \geqslant 1 \,\,\left( {{\sigma _{22}} < 0} \right)。$ (11)

2 有限元模型

 图 1 复合材料无人艇有限元模型 Fig. 1 Finite element model of composite transportation boat

 $P = {A_1}\mu + {A_2}{\mu ^2} + {A_3}{\mu ^3} + \left( {{B_0} + {B_1}\mu } \right){\rho _0}e，$ (12)

 $P = {T_1}\mu + {T_2}{\mu ^2} + {B_0}{\rho _0}e 。$ (13)

 $e = \left( {\rho gh + {p_0}} \right)/\rho {B_0}。$ (14)

 $p = \left( {\gamma - 1} \right)\rho e。$ (15)

3 数值模拟结果 3.1 应力响应

 图 2 爆炸过程中的应力分布云图 Fig. 2 Stress distribution cloud diagram during the explosion

 图 3 实肋板上三节点的应力时程响应 Fig. 3 The stress time history response of the three nodes on the solid rib

 图 4 横舱壁前后两点的应力时程曲线 Fig. 4 Stress time history curve at two points before and after the transverse bulkhead

 图 5 各时刻的位移云图 Fig. 5 Displacement cloud diagram at each moment
3.2 位移响应

 图 6 12 ms时的失效云图 Fig. 6 Failure cloud diagram at 12 ms

4 结　语

1）对于复合材料无人艇，由于船底是三角形结构，所以在受到水下爆炸载荷作用时，船底迎爆面受到的冲击载荷会传递到实肋板、船底纵桁的顶部，不断汇聚直到层合板失效。迎爆面船底板的应力能够向周围迅速扩散，在承受冲击波的二次加载后仍然不会失效，承受爆炸载荷后整个船底会产生较大的弹性变形。

2）在整个爆炸过程中，舷侧板的局部应力最高达到611 MPa，这可能是冲击波传播到自由水面而产生的空化效应造成的，但随着时间的推移，舷侧应力迅速降低，12 ms时已经降到400 MPa以下，与之相对的是，舷侧肋板和强横梁上均出现大变形。

3）横舱壁结构能将一部分冲击波能量转为向Z轴方向的动能，带动附近甲板向上位移，同时向舷侧传播的冲击波最终在强横梁末端汇聚，使迎爆舱段的甲板产生轻微凹陷，横舱壁对于降低相邻舱段的冲击载荷和减缓冲击波的纵向传播也有一定效果，但作用不大。可以考虑将横舱壁改为吸能效率更高的波纹板结构，或加一层内底，与船底板和纵桁、实肋板形成蜂窝状结构来提高船体的抗爆性。

 [1] 张社荣, 孔源, 王高辉. 水下和空中爆炸冲击波传播特性对比分析[J]. 振动与冲击, 2014, 33(13): 148-153. [2] 梅志远, 朱锡, 刘润泉. 船用加筋板架爆炸载荷下动态响应数值分析[J]. 爆炸与冲击, 2004, 24(1): 80−84. [3] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion[J]. International Journal of Impact Engineering, 2001, 25: 373−386. [4] RAJENDRAN R, NARASIMHAN K. Linear elastic shock response of plane plates subjected to underwater explosion[J]. International Journal of Impact Engineering, 2001, 25: 493−506. [5] 钱胜国, 张伟林, 徐光耀, 近自由水面水下爆炸时水中激波特性[J]. 爆炸与冲击, 1983.3(4): 53−63. [6] TEKALUR S A, SHIVAKUMAR K, SHUKLA A. Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads, Compos B, 2008, 39: 57−65. [7] GARGANO A, PINGKARAWAT K, BLACKLOCK M, et al. Comparative assessment of the explosive blast performance of carbon and glass fibre-polymer composites used in naval ship structures[J]. Composite Structures, 2017, 171: 306−316. [8] COMTOIS J L R, EDWARDS M R, OAKES M C. The effect of explosives on polymer matrix composite laminates[J]. Compos A, 1999, 30: 181−190. [9] YAHYA M Y, CANTWELL W J, LANGDON G S, et al. The blast behavior of fiber reinforced thermoplastic laminates[J]. Compos Mater, 2008, 42: 2275−2297. [10] LATOURTE F, GREGOIRE D, ZENKERT D, et al. Failure mechanisms in composite panels subjected to underwater impulsive loads[J]. Mech. Phys. Solids, 2011, 59: 1623−1646. [11] 孙承伟. 应用爆轰物理[M]. 北京: 国防工业出版社, 2000. [12] 朱锡, 张振华, 梅志远. 舰船结构毁伤力学[M]. 北京: 国防工业出版社, 2013. [13] 张振华, 朱锡, 冯刚, 等. 水下爆炸冲击波作用下自由环肋圆柱壳动态响应的数值仿真研究[J]. 振动与冲击, 2005(1): 47-50+135.