﻿ 风浪干扰条件下舰船航向保持非线性控制系统
 舰船科学技术  2022, Vol. 44 Issue (10): 163-166    DOI: 10.3404/j.issn.1672-7649.2022.10.035 PDF

Nonlinear control system for ship course keeping under the condition of wind and wave disturbance
SHEN Si-lin
Shanghai Maritime Academy, Shanghai 200120, China
Abstract: The marine environment has complex and changeable characteristics. When a ship sails on the sea, it will be disturbed by wind and waves, which will have a certain degree of influence on the ship's course maintenance. In order to make the ship maintain a stable sailing state all the time, and move forward according to the established heading, so as to reach the destination smoothly, it is necessary to effectively control the heading of the ship. The course of the ship has nonlinear characteristics, and the conventional linear control system cannot achieve the expected control effect. Based on this, under the premise of fully considering the disturbance of wind and waves, relying on the structural characteristics of the nonlinear system, the course of the ship can be developed. The goal of controlling heading is achieved by maintaining the automatic controller.
Key words: wind and waves     ship     course     nonlinear control
0 引　言

1 舰船航向控制模型的构建

2 风浪干扰下舰船航向保持非线性控制系统 2.1 最优控制参数选取

 ${T_r} = \frac{{{l_n} + \omega _n^{}}}{{{\omega _n}}} \text{。}$

2.2 基于非线性系统的航向自动控制器

 ${T_1}{T_2}\psi + {T_3} \cdot K\cdot H(\psi ) = K(\delta + 1) \text{，}$

 图 1 往复式机构的强度分布模型示意图 Fig. 1 Schematic diagram of the strength distribution model of the reciprocating mechanism

2.3 航向控制系统模拟仿真

 $TE\cdot \delta + 1 = KE\cdot{\delta _E} \text{。}$

 图 2 风浪干扰下的舰船PID控制系统控制框图 Fig. 2 Control block diagram of ship PID control system under the disturbance of wind and waves

 图 3 风浪干扰下的舰船PID控制系统中的纵向舵角响应示意图 Fig. 3 Schematic diagram of longitudinal rudder angle response in ship PID control system under wind and wave disturbance

 图 4 风浪干扰下的舰船PID控制系统中的横向舵角响应示意图 Fig. 4 Schematic diagram of lateral rudder angle response in ship PID control system under wind and wave disturbance

 图 5 引入白噪声干扰后的舰船航向PID控制系统横向舵角响应情况示意图 Fig. 5 Schematic diagram of lateral rudder angle response of ship heading PID control system after introducing white noise interference

 图 6 引入白噪声干扰后的舰船航向PID控制系统纵向舵角响应情况示意图 Fig. 6 Schematic diagram of longitudinal rudder angle response of ship heading PID control system after introducing white noise interference

 图 7 实际不同控制参数M下的纵向舵角响应情况示意图 Fig. 7 Schematic diagram of longitudinal rudder angle response under different actual control parameters M

3 结　语

 [1] 刘双. 舰船航向非线性控制的数学模型设计[J]. 舰船科学技术, 2021, 43(18): 73-75. [2] 王国栋. 非线性Backstepping算法在舰船动力定位系统控制的应用[J]. 舰船科学技术, 2020, 42(6): 112-114. [3] 王超, 史文森, 郭正东, 等. 基于双轴旋转惯导的舰船航向误差动态评估方法[J]. 中国惯性技术学报, 2020, 28(4): 551-555. [4] 黄谦, 周红进, 金鑫, 等. 舰船混沌运动的改进自适应Backstepping控制[J]. 指挥控制与仿真, 2020, 42(4): 128-132. DOI:10.3969/j.issn.1673-3819.2020.04.025 [5] 程春蕊, 毛北行. 一类不确定分数阶舰船运动混沌系统的滑模同步控制[J]. 安徽大学学报(自然科学版), 2019, 45(5): 45-48. [6] 邓英杰, 张显库, 张国庆. 水面舰船动力定位系统ESO输入饱和控制[J]. 系统工程与电子技术, 2019, 41(5): 1110-1117. [7] 韩孟孟, 池庆玺, 裴虎城. 一种多站模式下舰船航向航速快速解算方法[J]. 战术导弹技术, 2015(1): 69-72.