﻿ VR技术在船舶通信系统天线信号源驻波检测中的应用
 舰船科学技术  2022, Vol. 44 Issue (10): 155-158    DOI: 10.3404/j.issn.1672-7649.2022.10.033 PDF
VR技术在船舶通信系统天线信号源驻波检测中的应用

Application of VR technology in standing wave detection of antenna signal source in ship communication system
ZHANG Zhen
Dalian Ocean University, Dalian 116300, China
Abstract: Considering the influence of communication scene and equipment attributes on the standing wave detection results of antenna signal source, the standing wave detection method of antenna signal source based on VR technology in ship communication system is studied. Collect the overall three-dimensional environment information of the ship communication system, use VR technology to build the corresponding virtual ship communication scene model, fuse the attribute information of the communication hardware equipment according to the hierarchical modeling theory, give the fused attribute information to each communication hardware equipment in the VR communication scene model, generate the ship communication scene, and use the standing wave detection circuit of the antenna signal source of the virtual ship communication system, Detect the forward power and reverse power of the output signal after the antenna signal coupling processing, and obtain the standing wave detection results according to the two power operations. Experimental results show that this method has good communication scene construction effect, can accurately detect the standing wave of antenna signal source, and improve the communication signal control performance.
Key words: VR technology     ship communication system     antenna signal source     standing wave detection     three dimensional model construction     attribute fusion
0 引　言

1 基于VR技术的船舶通信系统天线信号源驻波检测方法 1.1 基于VR技术的虚拟船舶通信系统设计

 图 1 VR技术的船舶通信系统天线信号源驻波检测方案 Fig. 1 scheme of standing wave detection of antenna signal source of ship communication system by VR technology
1.2 船舶通信场景设计 1.2.1 船舶通信场景三维模型构建

 $Q\left( i \right) = \sum\limits_{j = 0}^i {{k_i}\left( j \right)} = \sum\limits_{j = 0}^i {\frac{{{b_i}}}{b}} \mathop {}\nolimits_{} ，i = 0,1,2, \cdots ,L - 1。$ (1)

 $\hat f\left( {x,y} \right) = \left\{ \begin{array}{*{20}{l}} g\left( {x,y} \right) - 1，& g\left( {x,y} \right) - {{\hat f}_{Lee}}\left( {x,y} \right) \geqslant t，\\ g\left( {x,y} \right) + 1，&g\left( {x,y} \right) - {{\hat f}_{Lee}}\left( {x,y} \right) < t，\\ g\left( {x,y} \right)，& {\rm{else}}。\\ \end{array} \right.$ (2)

 ${E_l} = \left\{ \begin{gathered} 1,\mathop {}\nolimits_{} \mathop {}\nolimits_{} \mathop {}\nolimits_{} \mathop {}\nolimits_{} \mathop {}\nolimits_{} \mathop {}\nolimits_{} l = 0,L，\hfill \\ \left[ {2\pi \cdot \frac{D}{2} \cdot {l_t}} \right],l = 1,2, \cdots ,L - 1。\hfill \\ \end{gathered} \right.$ (3)

1.2.2 通信设备属性融合

1）抽象分解船舶通信系统内各类硬件设备的功能，将船舶通信系统内各类硬件设备作为逻辑节点，依照dsfo-7-4规范，抽象获取数个逻辑节点，这些节点相对独立且能够实现基本通信功能，同时定义不同逻辑节点相关的数据对象，公式描述如下：

 $C = \frac{{{T_0}}}{{\left( {Y \times \phi } \right) \times S}}。$ (4)

2）抽象处理船舶通信系统内各类硬件设备信息并进行标识，分解通信硬件设备实际功能并实施类别划分。考虑船舶通信系统内的逻辑设备中的各逻辑节点功能均有所差异，以及不同逻辑节点对应的服务，所以对功能有所差异的逻辑节点进行数据处理：

 $V = \frac{{\sum\limits_x i \times \partial }}{{{f_e}}} 。$ (5)

3）确定通信服务，依照类别的差异化组织以上属性信息，构建定性的属性信息交换模型。

1.3 天线信号源驻波检测

 图 2 虚拟船舶通信系统天线信号源驻波检测电路整体设计架构 Fig. 2 Overall design architecture of standing wave detection circuit of antenna signal source in virtual ship communication system
2 实验结果与分析 2.1 虚拟船舶通信系统场景构建结果

 图 3 船舶通信系统VR场景设计结果 Fig. 3 VR scene design results of ship communication system
2.2 性能对比

2.3 驻波检测结果

 图 4 驻波检测结果 Fig. 4 Standing wave test results
2.4 通信信息控制性能

3 结　语

 [1] 颜晓娟, 安康, 张千锋, 等. 面向用户随机分布的NOMA-卫星通信网络性能分析[J]. 电讯技术, 2020, 60(2): 153-158. DOI:10.3969/j.issn.1001-893x.2020.02.005 [2] 南敬昌, 王梓琦, 高明明. 稀疏正则化逆向神经网络在双陷波超宽带天线设计中的应用[J]. 计算机应用研究, 2019, 36(8): 2473-2477+2482. [3] 颜丙生, 杨明超, 赵俊杰, 等. 0Cr17Ni4Cu4Nb不锈钢早期损伤非线性驻波法检测[J]. 振动与冲击, 2019, 38(13): 151-157. [4] 张雁鹏, 胥亚丽, 马军民, 等. 基于可见光通信和接收信号强度检测的列车定位方法研究[J]. 铁道科学与工程学报, 2021, 18(2): 485-493. [5] 庞春雷, 郭泽辉, 吕敏敏, 等. 基于PNN的北斗转发式欺骗干扰信号检测方法[J]. 中国惯性技术学报, 2021, 29(4): 554-560. [6] 左婷, 王法松, 张建康, 等. 室内可见光通信系统中基于压缩感知的空移键控信号检测方法[J]. 电子学报, 2022, 50(1): 36-44. [7] 郝国成, 张必超, 锅娟, 等. 高质量LMSCT时频分析算法及其在雷达信号目标检测中的应用[J]. 上海交通大学学报, 2022, 56(2): 231-241. [8] 甄希金, 李酬, 杨润党, 等. 基于VR技术的多人协同船舶消防系统开发及应用[J]. 船舶工程, 2020, 42(3): 15-18+151.