﻿ 舰船腐蚀静电场在海水中的传播规律研究
 舰船科学技术  2022, Vol. 44 Issue (10): 107-110    DOI: 10.3404/j.issn.1672-7649.2022.10.021 PDF

1. 海军工程大学 电气工程学院，湖北 武汉 430033;
2. 中国人民解放军32382部队，湖北 武汉 430311

Research on propagation law of corrosive electrostatic field of ship in seawater
ZHU Zhen1,2, WANG Xian-gjun1, XU Qing-lin1, YU Jia-wang1
1. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China;
2. No.32382 Unit of PLA, Wuhan 430311, China
Abstract: In order to use the corrosion electrostatic field of ship to track and locate the ship, it is necessary to understand the propagation law of corrosion electrostatic field of ship in seawater. A three-dimensional boundary element method was used to establish a submarine corrosion electrostatic field model, and the influence of the propagation distance in the horizontal direction, the depth direction and the oblique 45° direction in the seawater on the electrostatic field of the ship was studied, and the components of Ex, Ey and Ez of the electrostatic field in the water were analyzed. The distribution law in the horizontal direction at the bottom 20 m and its underwater propagation law in three directions. The simulation results show that Ex and Ez were distributed symmetrically about the vertical plane in the horizontal direction at 20 m underwater, and Ey was distributed antisymmetrically about the vertical plane; the electrostatic field component decreases with the increase of distance. Ex is the highest in three directions, and can be used as the target signal for ship positioning and underwater weapons.
Key words: corrosion electrostatic filed     ship     boundary element method     law of propagation     distance
0 引　言

1 舰船腐蚀静电场边界元模型 1.1 模型建立

 图 1 潜艇边界元模型 Fig. 1 Boundary element model of submarine

 ${\nabla ^2}\phi {\text{ = }}\frac{{{\partial ^2}\phi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\phi }}{{\partial {y^2}}} + \frac{{{\partial ^2}\phi }}{{\partial {z^2}}} = 0 。$ (1)

 ${\boldsymbol J}=- \sigma \nabla \phi ，$ (2)

 ${\boldsymbol J}= \sigma {\boldsymbol E}。$ (3)

1.2 边界条件

 图 2 921A钢和B10铜合金的实测极化曲线 Fig. 2 Polarization curves of 921A steel and B10 copper alloy
2 结果与讨论 2.1 腐蚀静电场水下分布特征

 图 3 Z=−20m 平面上舰船静电场分布 Fig. 3 Ship electrostatic filed distribution on the Z=−20m plane

 图 4 Z=−20m平面上指定路径电场线分布 Fig. 4 Electric filed line distribution of specified path on the Z=−20m plane

 图 5 不同观测面电场三分量大小 Fig. 5 Three-component of electric field indifferent observation surfaces
2.2 腐蚀静电场传播规律分析

1）在3个观测面上得到的电场三分量信号中，Ex分量因量值较大，在远距离信号检测中更容易被电场传感器检测，因此在今后的舰船定位研究中，应重点利用量值大、衰减小的舰船静电场Ex分量；

2）电场三分量在距离艇体200 m以内时衰减迅速，距离超过200 m时衰减缓慢，与舰船极低频电场衰减规律吻合；

3）在3个观测面上对电场Ex分量传播规律曲线进行拟合，拟合曲线方程及拟合系数如表1所示。由图5表1可知，拟合曲线和电场变化规律曲线可以较好的拟合，且由电场信号的衰减曲线可知在距离艇体1 000 m以上时，静电场信号微弱容易被噪声所覆盖。

3 结　语

 [1] 姜润翔, 陈新刚, 张伽伟. 舰船电场及其应用[M]. 北京: 国防工业出版社, 2019. [2] 何芳, 王向军, 张建春. 舰船腐蚀电场建模及补偿最优解验证[J]. 国防科技大学学报, 2019, 41(6): 118-125. DOI:10.11887/j.cn.201906018 [3] 刘胜道. 舰船水下电场的测试技术与电偶极子模型研究[D]. 武汉: 海军工程大学, 2002. [4] JEFFREY I. Electromagnetic signature modeling and reduction[J]. The Newal Architect, 1999(8): 22-23. [5] 陈聪, 李定国, 龚沈光. 舰船静态电场深度换算方法[J]. 哈尔滨工程大学学报, 2009, 30(6): 719-722. DOI:10.3969/j.issn.1006-7043.2009.06.024 [6] 徐庆林, 王向军, 张建春, 等. 温度对舰船阴极保护和腐蚀静电场的影响[J]. 国防科技大学学报, 2019, 41(4): 182-189. DOI:10.11887/j.cn.201904026 [7] DYMARKOWSKI K, UCZCIWEK J. The extremely low frequency electromagnetic signature of the electric field of the ship[C]//Conference Proceding. UDT Europe, 2001: 1-6. [8] SCHAEFER D, ZION S, DOOSE J, et al. Numerical simulation of UEP signatures with propeller-induced ULF modulations in marritime ICCPsystem[C]//Marelec Marine Electromagnetics Conference, San Diego, 2011. [9] 喻浩. 舰船电场和低频电磁场防护措施[J]. 舰船科学技术, 2000, 22(3): 37-39. [10] 张华, 王向军, 单潮龙, 等. 基于目标静电场的水中兵器制导方法研究[J]. 电子学报, 2013, 41(3): 470-474. DOI:10.3969/j.issn.0372-2112.2013.03.009 [11] 曹寓. 舰船水下腐蚀静电场有限元仿真分析[J]. 舰船科学技术, 2015, 37(7): 69-72. DOI:10.3404/j.issn.1672-7649.2015.07.016 [12] 陈聪, 李定国, 龚沈光. 基于拉式方程的舰船静态电场深度换算[J]. 电子学报, 2010, 38(9): 2025-2029. [13] LAN Z G, WANG X T, HOU B R, et al. Simulation of sacrificial anode protection for steel platform using boundary element method.[J]. Engineering Analysis with Boundary Elements, 2012, 36(5): 903-906. DOI:10.1016/j.enganabound.2011.07.018 [14] 姜润翔, 胡英娣, 龚沈光. 基于点电源的传播静态电场深度换算方法研究[J]. 电波科学学报, 2014, 29(4): 685-693.