﻿ 槽道侧推水动力计算方法研究
 舰船科学技术  2022, Vol. 44 Issue (10): 26-32    DOI: 10.3404/j.issn.1672-7649.2022.10.006 PDF

1. 海军工程大学 舰船与海洋学院，湖北 武汉 430033;
2. 中国人民解放军91697部队，山东 青岛 266000

Research on CFD method of channel side push
YUAN Tian-ning1, YE Jin-ming1, SHI Bao-yong2
1. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China;
2. No.91697 Unit of PLA, Qingdao 266000, China
Abstract: With the increase in the size of transport ships, more and more attention has been paid to ship maneuverability, and the thrust from the channel thruster can provide lateral force for ship steering and keep the ship stable in the dynamic positioning system, which can improve the ship maneuverability and stability. In addition to the development of shaftless propulsion technology, the shaftless propeller is applied to the channel side thrust to improve the hydrodynamic performance of the channel propeller. In this paper, CFD software is used to numerically simulate shaftless lateral thrusting, and a set of CFD methods suitable for hydrodynamic calculation of channel lateral thrusting are obtained, and the calculation results are compared with experimental data to verify the reliability of the method. The reasons for the thrust of the hull and the magnitude of the thrust of each part are studied. The thrust of the hull is mainly caused by the pressure difference formed near the inlet and outlet of the channel due to the suction of the propeller, which produces an axial force in the same direction as the thrust of the propeller. By calculating the arc hydrodynamic force of the inlet and outlet of a series of radius channels, the minimum arc radius of the inlet without separation is obtained.
Key words: no axial side push     CFD method     hydrodynamic calculation
0 引　言

1 数值计算方法研究 1.1 研究对象

 图 1 几何模型 Fig. 1 Geometric model

 图 2 船体部分剖视图 Fig. 2 A section view of the hull

 ${K_T} = \frac{T}{{\rho {n^2}{D^4}}}，$ (1)
 ${K_Q} = \frac{Q}{{\rho {n^2}{D^5}}}，$ (2)
 ${C_F} = \frac{F}{{\rho {n^2}{D^4}}}，$ (3)
 $\eta = \frac{{{{[({K_T} + {C_F})/\text{π} ]}^{3/2}}}}{{{K_Q}}}。$ (4)

1.2 控制方程和湍流模型

 $\frac{{\partial {u_i}}}{{\partial {x_i}}} = 0 ，$ (5)
 $\rho \frac{{\partial ({u_i}{u_j})}}{{\partial {x_j}}} = \frac{{\partial p}}{{\partial {x_i}}} + \rho {g_i} + \rho \frac{\partial }{{\partial {x_j}}}\left[ {\mu \left( {\frac{{\partial {u_i}}}{{\partial {u_j}}} + \frac{{\partial {u_j}}}{{\partial {u_i}}}} \right) - \overline {u_i^\prime u_j^\prime } } \right]。$ (6)

1.3 计算域边界条件及位置确定

 图 3 计算域和边界条件设置 Fig. 3 Calculation domain and boundary condition setting

 图 4 计算域网格划分 Fig. 4 Grid division in computational domain

 图 5 不同进口位置船身推力曲线 Fig. 5 Thrust curves of ship body at different import positions

1.4 数值方法验证

 图 6 试验模型 Fig. 6 Test model

 图 7 边界条件设置 Fig. 7 Boundary condition setting

 图 8 计算域网格设置 Fig. 8 Computing domain grid settings

2 槽道侧推水动力计算结果分析 2.1 船身推力分析

 图 9 船身示意图 Fig. 9 Ship body diagram

 图 10 压力分布云图 Fig. 10 Pressure con-tours

 图 11 船体区域离散化 Fig. 11 Discretization of hull area

 图 12 不同圆环推力占比 Fig. 12 The thrust ratio of different rings
2.2 不同槽道入口形状对槽道侧推器水动力性能的影响

 图 13 Z=0平面速度矢量图 Fig. 13 Z= 0 plane velocity vector diagram

 图 14 不同进口形状Z=0平面速度标量图 Fig. 14 Plane velocity scalar graphs with different inlet shapes Z=0

 图 15 不同进口形状转子盘面前0.1D处沿x轴方向速度分布图 Fig. 15 Velocity distribution along x-axis at 0.1D in front of rotor disks with different inlet shapes

 图 16 不同进口形状转子盘面前0.2D处沿x轴方向速度分布图 Fig. 16 Velocity distribution along x-axis at 0.2D in front of rotor disks with different inlet shapes

 图 17 不同进口形状转子盘面前0.3D处沿x轴方向速度分布图 Fig. 17 Velocity distribution along x-axis at 0.3D in front of rotor disks with different inlet shapes

 图 18 不同槽道进口形式水动力曲线图 Fig. 18 Hydrodynamic curves of different channel inlet forms

3 结　语

 [1] MÜLLER S B, ABDEL M M. Numerical investigation of transverse thrusters[J]. Proceedings, STG-Sprechtag–CFD in Ship Design, TUHH, Hamburg. 2007. [2] 姚志崇, 曹庆明. 槽道桨水动力性能数值分析[C]//2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集, 2008. [3] 严周广. 基于CFD的船用侧推器水动力性能研究[D]. 镇江: 江苏科技大学, 2012. [4] YAO Z Q, YAN Z G. Hydrodynamic performance analysis and verification of transverse thrusters[J]. Journal of Ship Mechanics, 2012, 16(3): 236-245. [5] 沈海云. 可调侧推器设计与水动力性能仿真研究[D]. 杭州: 浙江大学, 2012. [6] LU P, WANG S. CFD simulation of propeller and tunnel thruster performance[C]//ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. [7] 郁程. 侧推器水动力性能与设计方法研究[D]. 上海: 上海交通大学, 2017. [8] 曹庆明, 洪方文, 胡芳琳. 梢部驱动推进器的研究与进展[C]//第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会文集, 2009. [9] TANIGUCHI K, WATANABE K, KASAI H, et al. Investigation into the fundamental characteristics and operating performances of side thruster[R]. Tokyo, Japan: Japan Ship Technology Research Association, 1964.