﻿ 潜艇耐压艇体肋骨侧倾损伤后剩余强度研究
 舰船科学技术  2022, Vol. 44 Issue (10): 10-15    DOI: 10.3404/j.issn.1672-7649.2022.10.003 PDF

1. 海军工程大学 舰船与海洋学院，湖北 武汉 430033;
2. 中国人民解放军92196部队，山东 青岛 266000

Research on the residual strength of submarine pressure hull after ribs inclination damage
LIU Xu1,2, LV Yan-song1, ZHONG Yi1
1. College of Ship and Ocean, Naval University of Engineering, Wuhan 430033, China;
2. No.92196 Unit of PLA, Qingdao 266000, China
Abstract: In order to research the residual strength of submarine pressure hull after ribs inclination damage.This paper take inclination deformation of the ribs as the form of damage.In this study, finite element analysis software Ansys is used to calculate the stress distribution, stability and ultimate bearing capacity of the model under hydrostatic external pressure. The influence of rib inclination on the mechanical properties of ring-stiffened cylindrical shell is analyzed. The result shows that the circumferential stress of middle surface near the ribs damaged is the stress index controlling the bearing capacity of the structure after the ribs are tilting damaged.With the increasing of the deformation angle, the overall stability and ultimate strength of the cabin decreases significantly.By using the calculation results in this paper, the residual limit depth of submarine can be deduced.
Key words: submarine     pressure hull     ring-stiffened cylindrical shell     inclination damage to the ribs     residual strength
0 引　言

1 肋骨侧倾损伤的环肋圆柱壳计算模型 1.1 计算模型的建立

 图 1 环肋圆柱壳舱段结构图 Fig. 1 Ring-stiffened cylindrical shell

 图 2 3根肋骨向右侧倾30° Fig. 2 Three ribs deformed 30 degrees to the right
1.2 有限元模型及材料参数

 图 3 损伤前有限元模型 Fig. 3 Finite element model before damage

 图 4 损伤后有限元模型（8，9，10，11号肋骨损伤） Fig. 4 Finite element model after damage (No.8，No.9，No.10，No.11 rib were damaged)
1.3 边界条件及载荷

2 肋骨侧倾损伤后应力分析 2.1 肋骨侧倾角度对应力的影响

 图 5 中面环向应力分布曲线 Fig. 5 Distribution curve of circumferential stress of middle surface

 图 6 内表面纵向应力分布曲线 Fig. 6 Distribution curve of internal longitudinal stress

 图 7 不同倾斜角度时应力变化曲线 Fig. 7 Stress at different inclination angle of rib

2.2 肋骨侧倾数目对应力的影响

3 肋骨侧倾损伤后耐压艇体稳定性分析 3.1 损伤肋骨侧倾角度对稳定性的影响

 图 8 肋间壳板失稳变形 Fig. 8 Deformation of instability of shell between ribs

 图 9 总体失稳变形 Fig. 9 Deformation of overall instability

 图 10 肋间壳板失稳临界压力变化曲线 Fig. 10 Critical Pressure of instability of shell between ribs

 图 11 总体失稳临界压力变化曲线 Fig. 11 Critical Pressure of overall instability

3.2 损伤变形肋骨数目对稳定性的影响

4 肋骨侧倾损伤后耐压艇体极限承载能力分析 4.1 损伤肋骨侧倾角度对极限承载能力的影响

 图 12 不同肋骨侧倾变形角度下模型的极限强度 Fig. 12 Ultimate strength of the model at different inclination angle of rib

 图 13 肋骨侧倾30°舱段极限状态时的变形形态 Fig. 13 Deformation pattern of cabin at limit state with 30° inclination of rib

 图 14 肋骨侧倾70°舱段极限状态时的变形形态 Fig. 14 Deformation pattern of cabin at limit state with 70° inclination of rib
4.2 肋骨侧倾数目对极限承载能力的影响

5 潜艇肋骨侧倾损伤后极限下潜深度评估

 ${H_{sy}} = \min \left( {{H_{sy - 1}},{H_{sy - 2}},{H_{sy - 3}},{H_{sy - 4}}} \right)，$
 $\begin{split} &{H_{sy - 1}} = \frac{{\sigma _2^0}}{{\sigma _{2{\text{ - s}}}^0}}{H_{jx}}\text{，}{H_{sy - 2}} = \frac{{{P_{cr - s}}}}{{{P_{cr}}}}{H_{jx}}\text{，}\\ &{H_{sy - 3}} = \frac{{P_{_{cr - s}}'}}{{P_{cr}'}}{H_{jx}}\text{，}{H_{sy - 4}} = \frac{{{P_{jx - s}}}}{{{P_{jx}}}}{H_{jx}} 。\end{split}$

6 结　语

1）随着肋骨侧倾角度的增大，损伤肋骨附近跨中壳板中面环向应力逐渐增大，损伤肋骨根部壳板内表面纵向应力和肋骨应力逐渐减小。跨中壳板中面环向应力是控制潜艇剩余下潜深度的应力指标。

2）肋骨损伤变形后，舱段总体稳定性显著降低，肋骨间壳板稳定性变化较小。舱段总体稳定性是控制潜艇剩余下潜深度的稳定性指标。

3）肋骨侧向损伤变形角度和变形肋骨数目增加，均降低结构的极限强度，但侧倾角度会带来更为严重的强度不足。

4）通过对损伤后耐压艇体的应力、稳定性和极限强度的计算，可以反推潜艇的剩余极限下潜深度，从而为潜艇损伤后短时的使用提供技术支持。

 [1] SURKO S W. Crushing strength of box columns with partially-damaged plating[J]. Pergamon, 1991, 33(12): 1017−1028. [2] PAIK JK, THAYAMBALLIA K, YANG SH. Residual strength assessment of ships after collision and grounding[J]. Marine Technology, 1998, 35(1): 38-54. [3] NIESSEN E,. Structural design for enhanced survivability of ship's hulls[J]. Iongitudinal Strength, 1991. [4] NOTARO G, KIPPENES J, AMLASHI H, et al. Residual hull girder strength of ships with collision or grounding damages[C]// 11th Inte. Symp. on Practical Design of ships and Other Floating Structures. Rio, Brazil, 2010. [5] 高本国. 船体极限强度与破损剩余强度非线性有限元分析[D]. 武汉: 武汉理工大学, 2012. [6] 李晨鹏, 岳亚霖, 李永正, 等. 含裂纹损伤的舱段剩余极限强度研究[J]. 舰船科学技术, 2019, 41(3): 25-30+49. LI Chen-peng, YUE Yalin, LI Yong-zheng, et al. Research on residual ultimate strength of cabin with crack damage[J]. Ship Science and Technology, 2019, 41(3): 25-30+49. [7] 白雪飞, 郭日修, 赵海江. 受损伤潜艇结构剩余强度评估[J]. 船舶力学, 2012, 16(Z1): 118-126. BAI Xue-fei, GUO Ri-xiu, ZHAO Hai-jiang. Evaluation of residual strength of damaged submarine structure[J]. Journal of Ship Mechanics, 2012, 16(Z1): 118-126. [8] 梅志远, 李卓, 吕岩松. 单/双壳体潜艇结构耐撞剩余强度特性研究[J]. 中国舰船研究, 2011, 6(5): 7-10. MEI Zhi-yuan, LI Zhuo, LV Yan-song. Research on crashworthiness residual strength characteristics of single/double hull submarine structure[J]. China Ship Research, 2011, 6(5): 7-10. DOI:10.3969/j.issn.1673-3185.2011.05.002 [9] 马晓龙, 吴梵, 张二. 点蚀损伤对环肋圆柱壳极限强度的影响[J]. 船海工程, 2018, 47(1): 29-32+37. DOI:10.3963/j.issn.1671-7953.2018.01.007 [10] 吕岩松, 吴龙祥. 局部损伤环肋圆柱壳的强度分析和加强方案[J]. 舰船科学技术, 2013, 35(8): 62-65. DOI:10.3404/j.issn.1672-7649.2013.08.014 [11] 袁伯伟. 潜艇不垂直肋骨的强度计算[J]. 舰船科学技术, 1984(11): 37-52+84. [12] THEODORE, V, KÁRMÁN. The engineer grapples with nonlinear problems[J]. Bulletin of the American Mathematical Society, 1940, 46.