﻿ 基于修正函数法的双燃料散货船船型优化
 舰船科学技术  2022, Vol. 44 Issue (10): 6-9    DOI: 10.3404/j.issn.1672-7649.2022.10.002 PDF

Research on the optimization of a bulk carrier based on the modified function method
SHEN Guan-zhi, FENG Jun, ZHENG An-ran, ZONG Tao
China Ship Scientific Research Center, Shanghai 200011, China
Abstract: With the improvement of green energy saving requirements, new requirements have been put forward for the quality and design cycle of ship optimization work. Aiming at the time-consuming and low efficiency characteristics of traditional hull form optimization methods in the hull deformation stage, an automatic deformation program was developed based on the modified function method. Using this program, the automatic deformation of the hull lines of the 210 000DWT bulk carrier was realized. Combining the experience of CFD, carry out line optimization of the bow and stern, and analyze the CFD results of each hull form in the optimization process, and finally obtain the optimized hull form with the best overall performance. In addition, the final optimized hull form was verified by a towing tank model test. The test results showed that the power received by the propeller of the optimized ship was about 3% lower than that of the initial ship. This method has successfully realized the rapid deformation of the hull lines. Compared with the traditional manual modification of the hull form, it saves a lot of time, can obtain a larger number of hull form schemes, and improves the optimization efficiency of the hull form while meeting the performance index requirements.
Key words: modified function     automatic deformation     CFD     hull form optimization
0 引　言

1 优化方法 1.1 船体线型变形方法

 ${H_{new}}\left( {x,y,z} \right) = {H_{old}}\left( {x,y,z} \right) + \Delta H\left( {x,y,z} \right) 。$ (1)

 图 1 船体线型自动变形程序流程图 Fig. 1 Flow chart of hull line automatic deformation program
1.2 CFD评估方法

1.3 船型优化流程

 图 2 船型优化流程 Fig. 2 Ship form optimization process

2 研究对象

 图 3 船体三维示意图 Fig. 3 3D schematic diagram of hull
3 性能评估与方案优选

 图 4 首部和尾部主要变形区域的示意图 Fig. 4 Schematic diagram of main deformation areas of bow and stern
3.1 兴波阻力性能优化

 图 5 变形方案兴波阻力大小汇总图 Fig. 5 Summary diagram of wave resistance

 图 6 初始线型和方案1的舷侧波形对比图 Fig. 6 Comparison diagram of shipboard waveform between initial line type and scheme 1
3.2 总阻力和推进性能优化

 图 7 各方案阻力和推进性能汇总图 Fig. 7 Summary diagram of resistance and propulsion performance of each scheme

4 模型试验验证

 图 8 初始线型和最终方案模型试验收到功率对比图 Fig. 8 Comparison diagram of PD (model test) of preliminary and final hull line

5 结　语

1）结合基于修正函数的船体线型自动变形技术与 CFD 数值评估技术，建立了高效船型设计方法。该方法成功实现了船体线型的快速变形，与传统的手动修改线型相比，节省大量时间，能获得更多数量的线型方案，提高了船型优化效率的同时达到性能指标要求。

2）以1艘21万吨级双燃料散货船作为设计对象，设计吃水和设计航速工况下的快速性能作为优化目标，采用船型自动变形程序和 CFD 评估方法对其整体线型进行优化设计。结果表明：在满足工程约束条件下，最终方案快速性能收益十分显著，设计航速时模型总阻力降低了1.464%，推进效率提高了1.448%。

3）为了验证优化设计效果，分别开展了初始方案与最终方案快速性模型试验。试验结果表明：在设计吃水下，相对初始方案，最优方案整个航速范围内，收到功率均有降低，在设计航速附近最为显著，收到功率下降了约3%。该结果和数值优化计算结果的变化趋势基本吻合，充分验证了本文船型优化设计方法的有效性和可靠性。

 [1] 丁惊雷, 吴思莹. 双燃料应用对大型油船总体设计的影响[J]. 船舶工程, 2021, 43(5): 39-43. [2] CAMPANA E F, PERI D, TAHARA Y, et al. Numerical optimization methods for ship hydrodynamic design[J]. Transactions-Society of Naval Architects and Marine Engineers, 2010, 118: 1−42. [3] 万德成, 缪爱琴, 赵敏. 基于水动力性能优化的船型设计研究进展[J]. 水动力学研究与进展, 2019, 34(6): 693-712. [4] 陈京普, 朱德祥, 何术龙, 等. 一种快速评估方法在船舶线型优化中的应用研究[J]. 中国造船, 2009, 50(4): 7-12. DOI:10.3969/j.issn.1000-4882.2009.04.002 [5] 陈京普, 朱德祥, 黄少锋. 基于兴波数值模拟的 RANS 求解器加速方法研究[J]. 船舶力学, 2011, 15(Z1): 25-31. [6] CHEN Jing-pu, WEI Jin-fang, JIANG Wu-jie. Optimization of a twin-skeg container vessel by parametric design and CFD simulations[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(5): 466-474. DOI:10.1016/j.ijnaoe.2016.05.008 [7] 李胜忠, 徐伟光, 梁川, 等. 船舶规则波中阻力与运动响应多目标优化设计研究[C]//2019年中国造船工程字会优秀学术论文集, 2020: 218−226. [8] 赵无忧, 郭啸轩. 基于CFD的散货船船体型线自动优化[J]. 江苏船舶, 2019, 36(4): 8-11. [9] 冯君, 胡世亮, 魏锦芳. 基于修正函数方法的船体线型变形技术研究[C]//第二十九届全国水动力学研讨会论文集（下册）, 2018: 449-456. [10] LARSSON L. CFD in ship design-prospects and limitati-onsl[J]. Ship Technology Research, 1997, 44: 1-30. [11] 杨佑宗, 杨奕, 陈文炜, 等. 船舶线型设计与研究[J]. 上海造船, 2001(2): 18-23+2.