﻿ 船舶主动式减摇鳍的分布定位设计
 舰船科学技术  2022, Vol. 44 Issue (9): 44-47    DOI: 10.3404/j.issn.1672-7649.2022.09.009 PDF

Research on distribution and positioning design of ship active fin stabilizer
NI Jun, HUANG Ying-chun
Wuhan Institute of Shipbuilding Technology, Wuhan 430050, China
Abstract: The service conditions of Ship Fin Stabilizer include navigation state and zero speed state. When the ship is sailing, the fin stabilizer and fluid move each other and produce anti overturning torque on the surface of fin stabilizer to ensure the navigation stability of the ship. When the ship is in the state of zero speed, due to the action of interference torque such as sea wave and sea wind, the ship will also roll and pitch. Therefore, roll reduction control must also be carried out. At this time, the ship's roll reduction is to use the mechanical structure to move the fin stabilizer to produce anti overturning torque. In this paper, the hydrodynamic characteristics of ship rolling and fin stabilizer are systematically modeled, which is carried out from the airfoil, shape, distribution and positioning of active fin stabilizer, which is helpful to improve the design level of existing ship fin stabilizer.
Key words: fin stabilizer     airfoil     fluid power     distributed positioning deign
0 引　言

1 船舶横摇运动建模及主动式减摇鳍力学特性分析

 $\left( {{I_x} + \Delta {I_x}} \right)\dfrac{{{{\rm{d}}^2}\alpha }}{{{\rm{d}}{t^2}}} + \dfrac{1}{2}{M_x}\dfrac{{{\rm{d}}\alpha }}{{{\rm{d}}t}} + kh\alpha = f\left( t \right) \text{。}$

 图 1 船舶主动减摇鳍的数学坐标系 Fig. 1 Mathematical coordinate system of ship active fin stabilizer

 ${F_S} = \frac{1}{2}{\rho _0}{A_O}{C_0}{v^2} \text{。}$

 ${M_S} = \frac{1}{2}L{\rho _0}{A_O}\cos \theta \text{。}$

1）波浪弯矩

 ${M_o} = \frac{1}{2}{k_1}{k_2}L{_b^2}B(\delta + 0.8) \cdot {10^{ - 2}}\;{\rm{kN}} \cdot {\rm{m}} \text{。}$

 ${k_1} = 4.5{\left( {\frac{{{L_b}}}{{980}} - 0.2} \right)^2} + 0.82 \text{，} {k_2} = 9 - 0.96{\left( {\frac{{300 - {L_b}}}{{100}}} \right)^2} \text{。}$

2）波浪扭矩

 ${M_n} = {e^{ - 0.00023}}\frac{{{L_b}{B^2}{C_t}}}{{10000}}\left( {1.7 + 1.5\frac{\alpha }{{{h_0}}}} \right) \text{。}$

3）静水弯矩

 ${M_s} = \iint {\left[ {g(x) - h(x)} \right]}{\rm{d}}x{\rm{d}}x \text{。}$

4）横摇弯矩

 ${T_0} = - f\left( t \right) = 9 \times \frac{{{P_0}(B + {h_0})}}{{600}} \text{。}$

2 船舶主动式减摇鳍控制系统设计

 图 2 船舶主动式减摇鳍控制系统功能框图 Fig. 2 Functional block diagram of ship active fin stabilizer control system

1）角速度陀螺仪

2）模糊控制器

$\displaystyle\sum\limits_{i = 1}^n {{b_i} = 1}$ ${b_i} \geqslant 0(i = 1,2,..n)$

3）随动系统

 ${G_t}\left( s \right) = \frac{{550}}{{{s^2} + 15s + 225}} 。$
3 船舶主动式减摇鳍的分布定位和形状设计 3.1 主动式减摇鳍的翼型设计

 图 3 减摇鳍的翼型特征曲线示意图 Fig. 3 Schematic diagram of airfoil characteristic curve of fin stabilizer

1）升力系数

 ${C_L} = \dfrac{L}{{\dfrac{1}{2}\rho V_\infty ^2c}} \text{，}$

2）阻力系数

 ${C_D} = \dfrac{D}{{\dfrac{1}{2}\rho V_\infty ^2c}} 。$

3）压强系数

 ${C_p} = \dfrac{{P - {P_\infty }}}{{\dfrac{1}{2}\rho V_\alpha ^2}} \text{。}$

 图 4 减摇鳍翼型周围流场的压力特性仿真结果 Fig. 4 Simulation results of pressure characteristics of flow field around fin stabilizer airfoil
3.2 主动式减摇鳍的形状设计及分布定位

 ${L^2} = \frac{{3.5\times {B_0}\times{D_0}}}{{{T^2}\times{V^2}}} \text{。}$

1）横向布置要求

 图 5 主动式减摇鳍横向布置示意图 Fig. 5 Lateral layout of active fin stabilizer

2）纵向布置要求

3.3 船舶主动式减摇鳍的特性仿真

 图 6 不同波浪高度下的减摇鳍升力特性曲线 Fig. 6 Lift characteristic curve of fin stabilizer under different wave heights
4 结　语

 [1] 吉明, 叶青云, 袁聪. 减摇鳍与船体的适配性数值模拟[J]. 中国舰船研究, 2014(3): 8-19+42. JI Ming, YE Qing-yun, YUAN Cong. Numerical simulation of adaptability between fin stabilizer and hull[J]. Chinese Journal of Ship Research, 2014(3): 8-19+42. [2] 曾启盛. 基于MATLAB的减摇鳍收放过程力学特性仿真[J]. 船舶工程, 2012, 34(S2): 291-294. ZENG Qi-sheng. Simulation of mechanical characteristics of fin stabilizer during retraction and release based on MATLAB[J]. Marine engineering, 2012, 34(S2): 291-294. [3] 彭杉, 杨奕. 基于流固耦合的减摇鳍鳍翼力学性能分析研究[J]. 机电设备, 2016, 33(1): 17-22. PENG Shan, YANG Yi. Analysis and Research on mechanical properties of fin stabilizer based on fluid structure coupling[J]. Electromechanical equipment, 2016, 33(1): 17-22. [4] 金鸿章, 綦志刚, 罗延明, 等. 基于Weis-Fogh机构的零航速减摇鳍升力模型的研究[J]. 系统仿真学报, 2007(17): 4079-4081. JIN Hong-zhang, QI Zhi-gang, LUO Yan-ming, et al. Research on lift model of zero speed fin stabilizer based on Weis Fogh mechanism[J]. Journal of system simulation, 2007(17): 4079-4081. [5] 金鸿章, 王龙金. 零航速下变鳍型减摇鳍升力模型研究[J]. 中国造船, 2010, 51(2): 9. JIN Hong-zhang, WANG Long-jin. Study on lift model of variable fin stabilizer at zero speed[J]. shipbuilding of China, 2010, 51(2): 9. [6] 金鸿章, 潘艳, 杨波. 小攻角下驼背鲸减摇鳍的理论计算[J]. 船舶力学, 2010, 14(11): 1219-1226. JIN Hong-zhang, PAN Yan, YANG Bo. Theoretical calculation of humpback whale fin stabilizer at small angle of attack[J]. Journal of Ship Mechanics, 2010, 14(11): 1219-1226.