﻿ 水下滑移边界减阻技术研究综述
 舰船科学技术  2022, Vol. 44 Issue (9): 1-6    DOI: 10.3404/j.issn.1672-7649.2022.09.001 PDF

1. 北京大学 工学院，北京 100871;
2. 北京大学南昌创新研究院，江西 南昌 330096;
3. 中国船舶集团有限公司第七〇五研究所昆明分部，云南 昆明 650101

A review of drag reduction technology for underwater slip boundary
LI Hong-yuan1,2, LV Peng-yu1,2, DU Zeng-zhi1, ZHU Min3, CHEN Ying-liang3
1. College of Engineering, Peking University, Beijing 100871, China;
2. Nanchang Innovation Institute of Peking University, Nanchang 330096, China;
3. Kunming Branch of the 705 Research Institute of CSSC, Kunming 650101, China
Abstract: Drag reduction has attracted a lot of attention in both engineering and sciences, which is important for national economy and military defense. Inspired by nature such as lotus and Nepenthes, biological underwater slip surfaces are fabricated, which mainly contain liquid-gas interface and liquid-infused surface. Underwater slip boundary technology shows good performance on drag reduction, while the study on drag reduction by underwater slip boundary technology is still unclear. Based on the underwater slip boundary drag reduction technology, this paper reviews the basic theories and implementation of underwater slip boundary and particularly overviews the study on drag reduction by liquid-gas interface and liquid-infused surface. Moreover, the key scientific issues of underwater slip boundary drag reduction are discussed. At last, this review looks forward to the future trends of drag reduction technology for underwater vehicles.
Key words: slip boundary     drag reduction mechanism     liquid-gas interface     liquid-infused surface
0 引　言

1 滑移边界条件 1.1 理论模型

 图 1 边界条件 Fig. 1 Boundary conditions

 ${u_s} = b{\left. {\frac{{\partial u}}{{\partial y}}} \right|_{wall}}。$ (1)

1.2 水下滑移边界的实现形式 1.2.1 气-液界面

1.2.2 液体浸润表面

2 气-液界面的减阻机理 2.1 层流减阻机理

 图 2 层流减阻研究现状 Fig. 2 Laminar drag reduction

2.2 湍流减阻机理

2006年，研究人员开始试图预测湍流中气-液界面减阻率的理论表达式。Fukagata等[23]推导了槽道湍流中减阻率与流向和展向滑移长度之间的理论关系式。Min等[24]采用直接数值模拟方法，通过给定无量纲的滑移长度，研究了气-液界面在槽道湍流中的减阻率。结果表明，滑移长度越大，减阻率越大，最大减阻率为29%。2013年，Park等[18]也采用直接数值模拟方法，将气-液界面的边界条件设置为无剪切，研究了气-液界面在槽道湍流中的减阻率。结果表明，随着GF增加，无量纲滑移长度增加，减阻率也增加，最大减阻率为90%。

 图 3 雷诺数对气-液界面速度和减阻率的影响[28] Fig. 3 Effect of Reynolds number on velocity and drag reduction at liquid-gas interface
3 液体浸润表面的减阻机理

4 滑移边界减阻技术的工程应用

Zhang等[33]开展了潜艇模型在层流状态下的减阻实验，模型的尺寸为3.5 cm×3.7 cm×33.0 cm。通过将疏水性铜颗粒固定在预交联的聚二甲基硅氧烷（PDMS）表面上，实现在潜艇模型表面上大面积制备超疏水涂层。实验过程中，保证相同的功率和实验条件，分别测试亲水和疏水模型，疏水模型减阻率达到15%。2018年，Reholon等[34]研究了在湍流状态下总长度为508 mm的自主水下航行器（AUV）模型的减阻特性，测试的雷诺数范围是5.0×105～1.2×106，当雷诺数为5.0×105时测量得到的最大减阻率为36%，这与其他文献中减阻的规律不同，对滑移边界减阻技术的工程应用又提出了新的挑战。2020年，Xu等[35]在开放水域对摩托艇下方的船体表面进行阻力测试，基于微梁测力系统测得的最大减阻约为30%，测试的样品大小为40 mm×70 mm，对应的航速约为5.14 m/s（见图4(a)）。北京大学段慧玲团队结合水下装备减阻的需求，将滑移边界减阻技术应用到水下航行器上，有效提升了该型水下装备的航程与航速，满足了新型装备对快速性的需求，如图4（b）所示。

 图 4 海洋装备减阻测试 Fig. 4 Drag reduction test with marine equipments.
5 总结与展望

 [1] RASHIDI S, HAYATDAVOODI M, ESFAHANI J A, Vortex shedding suppression and wake control: A review [J]. Ocean Engineering, 2016, 126: 57–80. [2] 冯景祥, 姚尧, 潘峰, 等. 国外水下无人装备研究现状及发展趋势[J]. 舰船科学技术, 2021, 43(23): 1-8. [3] FUKUDA K, TOKUNAGA J, NOBUNAGA T, et al. Frictional drag reduction with air lubricant over a super-water-repellent surface[J]. Journal of Marine Science & Technology, 2000, 5(3): 123-130. [4] XUE Y H, LV P Y, LIN H, et al. Underwater superhydrophobicity: Stability, design and regulation, and applications[J]. Applied Mechanics Reviews, 2016, 68(3): 30803. DOI:10.1115/1.4033706 [5] ROTHSTEIN J P. Slip on Superhydrophobic Surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 89-109. DOI:10.1146/annurev-fluid-121108-145558 [6] KARATAY E, HAASE A S, VISSER C W, et al. Control of slippage with tunable bubble mattresses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8422-8426. DOI:10.1073/pnas.1304403110 [7] LI D D, LI S C, XUE Y H, et al. The effect of slip distribution on flow past a circular cylinder[J]. Journal of Fluids and Structures, 2014, 51: 211-224. DOI:10.1016/j.jfluidstructs.2014.07.017 [8] EMAMI B, TAFRESHI H V, GAD-EL-HAK M, et al. Effect of fiber orientation on shape and stability of air–water interface on submerged superhydrophobic electrospun thin coatings[J]. Journal of Applied Physics, 2012, 111(6): 64325. DOI:10.1063/1.3697895 [9] PIAO L, PARK H. Two-dimensional analysis of air-water interface on superhydrophobic grooves under fluctuating water pressure[J]. Langmuir, 2015, 31(29): 8022-8032. DOI:10.1021/acs.langmuir.5b01847 [10] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46(1): 179-225. [11] WONG T S, KANG S H, TANG S, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. DOI:10.1038/nature10447 [12] FU M K, ARENAS I, LEONARDI S, et al. Liquid-infused surfaces as a passive method of turbulent drag reduction[J]. Journal of Fluid Mechanics, 2017, 824: 688-700. DOI:10.1017/jfm.2017.360 [13] YAN X T, JIN Y K, CHEN X M, et al. Nature-inspired surface topography: design and function[J]. Science China Physics, Mechanics & Astronomy, 2019, 63(2): 224601. [14] LIU Y, WEXLER J S, SCHÖNECKER C, et al. Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces[J]. Physical Review Fluids, 2016, 1(7): 74003. DOI:10.1103/PhysRevFluids.1.074003 [15] 文俊, 胡海豹, 杜鹏, 等. 超疏水表面水下减阻研究[C]//第二十九届全国水动力学研讨会, 2018. [16] CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters, 2006, 96(6): 66001. DOI:10.1103/PhysRevLett.96.066001 [17] OU J, PEROT B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12): 4635-4643. DOI:10.1063/1.1812011 [18] PARK H, PARK H, KIM J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11): 110815. DOI:10.1063/1.4819144 [19] HU H, WEN J, BAO L, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): 1603288. [20] DONG S, SONG B, HU H, et al. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface[J]. Physical Review Fluids, 2018, 3(3). [21] PEAUDECERF F J, LANDEL J R, GOLDSTEIN R E, et al. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7254-7259. DOI:10.1073/pnas.1702469114 [22] LI H, LI Z, TAN X, et al. Three-dimensional backflow at liquid–gas interface induced by surfactant[J]. Journal of Fluid Mechanics, 2020, 899. [23] FUKAGATA K, KASAGI N, KOUMOUTSAKOS P. A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces[J]. Physics of Fluids, 2006, 18(5): 360. [24] TAEGEE M, JOHN K. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7): 55-58. DOI:10.1063/1.1755723 [25] GOSE J W, GOLOVIN K, BOBAN M, et al. Characterization of superhydrophobic surfaces for drag reduction in turbulent flow[J]. Journal of Fluid Mechanics, 2018, 845: 560-580. DOI:10.1017/jfm.2018.210 [26] ZHANG J, TIAN H, YAO Z, et al. Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow[J]. Experiments in Fluids, 2015, 56(9). [27] LING H, SRINIVASAN S, GOLOVIN K, et al. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2016, 801: 670-703. DOI:10.1017/jfm.2016.450 [28] LI H, JI S, TAN X, et al. Effect of Reynolds number on drag reduction in turbulent boundary layer flow over liquid–gas interface[J] Physics of Fluids, 2020, 32: 122111. [29] SOLOMON B R, KHALIL K S, VARANASI K K. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow[J]. Langmuir, 2014, 30(36): 10970. DOI:10.1021/la5021143 [30] ROSENBERG B J, BUREN T V, FU M K, et al. Turbulent drag reduction over air and liquid impregnated surfaces [J]. Physics of Fluids, 2016, 28(1). [31] VAN BUREN T, SMITS A J. Substantial drag reduction in turbulent flow using liquid-infused surfaces[J]. Journal of Fluid Mechanics, 2017, 827: 448-456. DOI:10.1017/jfm.2017.503 [32] FU M K, ARENAS I, LEONARDI S, et al. Liquid-infused surfaces as a passive method of turbulent drag reduction[J]. Journal of Fluid Mechanics, 2017, 824: 688−700. [33] ZHANG S, OUYANG X, Li J, et al. Underwater drag-reducing effect of superhydrophobic submarine model[J]. Langmuir, 2015. 31(1): 587. [34] REHOLON D, GHAEMI S. Plastron morphology and drag of a superhydrophobic surface in turbulent regime[J]. Physical Review Fluids, 2018, 3(10). [35] XU M, GRABOWSKI A, YU N, et al. Superhydrophobic drag reduction for turbulent flows in open water[J]. Physical Review Applied, 2020, 13(3).