﻿ 低辐射高耐波性水面靶标平台方案设计
 舰船科学技术  2022, Vol. 44 Issue (8): 174-177    DOI: 10.3404/j.issn.1672-7649.2022.08.037 PDF

1. 中国人民解放军92941部队，辽宁 葫芦岛 125000;
2. 哈尔滨工程大学烟台研究(生)院，山东 烟台 264000

Study on scheme design of surface target platform with low radiation and high seakeeping
GUO Jing1, WANG Shuo1, SUN Shu-zheng2
1. No. 92941 Unit of PLA, Huludao 125000, China;
2. Yantai Graduate School, Harbin Engineering University, Yantai 264000, China
Abstract: Surface target is the key equipment to test the technical and tactical performance of weapon system. In order to meet the performance requirements of modern weapons and equipment for the stability, stealth and mobility of water surface targets, a small surface target platform with low radiation and high seakeeping based on grid structure is designed in this paper. The static hydraulic, stability, hydrostatic resistance and motion in waves of the platform are calculated and analyzed, and the overall technical indexes that the platform can achieve are given. Then, according to the overall performance analysis results, the design schemes for some supporting equipment such as platform anti rolling tank, positioning propeller, attitude control hydrofoil and so on are put forward, which lays a foundation for the detailed design and performance optimization of platform scheme.
Key words: low radiation     high seakeeping     water surface target     scheme design
0 引　言

1 低辐射高耐波性靶标平台构型方案 1.1 平台构型方案设计思路

1.2 平台构型方案组成与功能

1）平台主体结构设计

2）平台减摇系统设计

3）平台姿态控制系统设计

4）平台隐身性与机动性

 图 1 拖带式平台方案整体三维效果图 Fig. 1 3D sketch of the towing type platform
2 平台总体性能分析 2.1 静水力计算

 $\begin{split} x_b = \frac{{\displaystyle\sum\limits_{{{n}} = 1}^N {x_{bn}{v_n}} }}{{\displaystyle\sum\limits_{{{n}} = 1}^N {v_n} }},y_b = \frac{{\displaystyle\sum\limits_{{{n}} = 1}^N {y_{bn}{v_n}} }}{{\displaystyle\sum\limits_{{{n}} = 1}^N {v_n} }},z_b = \frac{{\displaystyle\sum\limits_{{{n}} = 1}^N {{b_n}{v_n}} }}{{\displaystyle\sum\limits_{{{n}} =1}^N {v_n} }} \end{split}。$ (1)
 $\begin{split} x_g = \frac{{\displaystyle\sum\limits_{{{n}} = 1}^N {x_{bn}{v_n}} }}{{\displaystyle\sum\limits_{{{n}} = 1}^N {m_n} }},y_g = \frac{{\displaystyle\sum\limits_{{{n}} = 1}^N {y_{gn}{m_n}} }}{{\displaystyle\sum\limits_{{{n}} = 1}^N {m_n} }},z_g = \frac{{\displaystyle\sum\limits_{{{n}} = 1}^N {{z_{gn}}{m_n}} }}{{\displaystyle\sum\limits_{{{n}} =1}^N {m_n} }} \end{split}。$ (2)

2.2 平台静水阻力分析

 图 2 外部网架结构的三维模型 Fig. 2 3D model of the truss structure

 图 3 网格划分图 Fig. 3 Sketch of the mesh diagram

 图 4 平台静水阻力计算结果 Fig. 4 Calm water resistance calculation results

 图 5 航速12 kn自由面兴波图 Fig. 5 Wave form on the free surface at 12 knots
2.3 平台耐波性分析

 图 6 航速12 kn顶浪规则波平台升沉与纵摇运动响应 Fig. 6 Heaving and pitching response in regular heading waves at 12 kn
2.4 平台总体技术指标

3 结　语

1）设计的低辐射高耐波水面靶标平台，由于采用球网框架式结构，平台整体质量分布与普通船体结构截然不同，其重心相对较低，具有良好的稳性和低辐射特性。

2）平台结构体积小、重量轻，具有良好的透水性，海浪环境中运动幅度较传统船型靶标更小，可保证平台在4级海况下稳定工作。

3）给出的低辐射高耐波性水面靶标平台的设计方案，为该靶标平台深化研究与装备研制奠定了基础。

 [1] 符燕, 付新胜. 美国水上靶标综述[J]. 飞航导弹, 2008(11): 32-34. [2] 王海涛, 秦刚. 美军MST靶标目标特性仿真分析[J]. 指挥控制与仿真, 2019, 41(2): 94-97. [3] 黄金星, 何琦, 董琳. 美国海军靶船发展研究[J]. 舰船科学技术, 2017, 39(3): 155-157. [4] 于正亮, 肖曦. 外军无人训练靶标发展研究[J]. 国防科技, 2014, 35(4): 99-103. [5] 阎肖鹏, 乔轶. 红外成像水面靶标的设计与实现[J]. 指挥控制与仿真, 2016, 38(4): 119-122. [6] 苏德章, 王爱民. 基于SWATH的遥控靶艇研究与设计[J]. 舰船电子工程, 2013, 33(12): 58–59. [7] 王海涛, 付军, 刘华军. 体目标水面雷达靶的设计与实现[J]. 舰船电子工程, 2011, 31(2): 98–101. [8] 宋波. 遥控靶船运动控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2007. [9] 陈健, 王永明. 舰船目标特性研究综述[J]. 舰船电子工程. 2008, 28(5): 17–21. [10] 郭京, 王爱民. 基于RTE和FRP的水面舰艇模拟靶标[J]. 舰船电子工程, 2011, 31(9): 88-91. DOI:10.3969/j.issn.1627-9730.2011.09.026 [11] 王海涛, 刁世伦. 无人艇在水面靶标应用与关键技术研究[J]. 舰船电子工程, 2021, 41(6): 5-8. [12] 徐家哲. 舰船纵向补给新型载体设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.