舰船科学技术  2022, Vol. 44 Issue (8): 17-23    DOI: 10.3404/j.issn.1672-7649.2022.08.004   PDF    
复合材料桁架设计及优化
李旭1, 胡高波2, 何坤涛3, 魏建辉1, 赖长亮1     
1. 武汉第二船舶设计研究所,湖北 武汉 430061;
2. 华中科技大学,湖北 武汉 430074;
3. 上海华为技术有限公司,上海 201206
摘要: 复合材料轻质、高强度及其优质的阻尼性能在减振结构设计领域有着广泛的应用前景。为探究复合材料在结构减振方面的效果,基于Abaqus软件对钢制管件和复合材料管件进行模态分析。通过频响试验测试钢制管件和复合材料管件的固有频率和阻尼比,并在复合材料管件内部填充装有不同比例阻尼沙的周期振子,实现增加结构阻尼的目的。基于该研究对矩形式桁架进行优化,利用动态试验测定复合材料桁架的振动传递性能。试验结果表明,在相同的情况下,复合材料管的阻尼比钢管提升了40.54%,且当阻尼沙在周期振子中的填充率为75%时,其阻尼效果最佳,阻尼比达0.0229。复合材料桁架加速度振级落差可以提升6.94 dB,在复合材料管内填充周期振子可进一步增加桁架的减振效果。
关键词: 复合材料     频响函数     阻尼比     Abaqus     加速度振级落差    
The material truss design and optimization
LI Xu1, HU Gao-bo2, HE Kun-tao3, WEI Jian-hui1, LAI Chang-liang1     
1. Wuhan Second Ship Design and Research Institute , Wuhan 430061, China;
2. Huazhong University of Science and Technology, Wuhan 430074, China;
3. Shanghai Huawei Technology Co. Ltd., Shanghai 201206, China
Abstract: Composite materials with light weight, high strength and excellent damping performance have a wide application prospect in the field of vibration reduction structure design. In order to explore the effect of composite materials in structural vibration reduction, this paper conducts modal analysis on steel pipe fittings and composite pipe fittings based on Abaqus software. The natural frequency and damping ratio of steel pipe fittings and composite pipe fittings are tested through frequency response tests, and periodic oscillators with different proportions of damping sand are filled in the composite pipe fittings to achieve the purpose of increasing structural damping. Based on this research, the rectangular truss perform optimization and use dynamic tests to determine the vibration transmission performance of the composite truss. The test results show that under the same conditions, the damping of the composite pipe is 40.54% higher than that of the steel pipe, and when the filling rate of the damping sand in the periodic oscillator is 75%, the damping effect is the best, with a damping ratio of 0.022 9. The acceleration vibration level diff