﻿ 泡沫铝填充I型复合夹层板横向剪切性能增强机理研究
 舰船科学技术  2022, Vol. 44 Issue (8): 12-16    DOI: 10.3404/j.issn.1672-7649.2022.08.003 PDF

Enhancement mechanism of aluminum foam-filled i-core composite sandwich panel on transverse shear performance
DAI Guang-min, CHEN Zhen
State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Abstract: In order to reveal the mechanism of foam-filling to enhance composite sandwich panel, the failure processes of empty and foam-filled I-core sandwich panels under transverse shear load were simulated by numerical simulation method. The supporting effect of aluminum foam on grids and webs of sandwich panel were discussed. The influence of material parameters on the shear performance of composite sandwich panel were analyzed, such as porosity and average pore diameter etc. The results show that aluminum foams provide an effective internal support for grids, which improve the buckling strength of the web and the overall transverse shear strength of composite sandwich panel. The decrease of porosity can enhance the shear resistance of composite sandwich panel. The average pore diameter has little effect on the shear strength. The filling of aluminum foam in cavities of sandwich panel can significantly improve the transverse shear resistance of I-core composite sandwich panel.
Key words: aluminum foam     sandwich panel     transverse shear     enhancement mechanism
0 引　言

1 研究对象

 图 1 夹层板尺寸参数 Fig. 1 Principal features of folded structure sandwich panels

 图 2 夹层板试样 Fig. 2 Specimen images of sandwich panel
2 计算模型

2.1 二维Voronoi随机多孔模型

 $K=\frac{\displaystyle\sum {A}_{i}}{A}\times 100\text{%} ，$ (1)
 $D=2\sqrt{\frac{\displaystyle\sum {A}_{i}}{i\cdot {\text{π}} }}。$ (2)

 图 3 二维泡沫铝有限元模型 Fig. 3 2D aluminum foam finite element model
2.2 有限元模型

 图 4 有限元模型和试样截面 Fig. 4 Finite element model and cross-section of specimen

3 横向剪切性能增强效应分析

 图 5 空心夹层板和复合夹层板应力应变曲线对比 Fig. 5 Comparison of stress-strain curves between empty and composite sandwich panels

 图 6 空心夹层板和复合夹层板的剪切失效过程 Fig. 6 Shear failure process of empty and composite sandwich panels

4 泡沫铝材料参数对横向剪切性能的影响 4.1 孔隙率

 图 7 孔隙率对横向剪切性能的影响 Fig. 7 Effect of porosity on transverse shear performance

 图 8 孔隙率对腹板破坏模式的影响 Fig. 8 Effect of porosity on failure mode of webs
4.2 平均孔径

 图 9 平均孔径对横向剪切性能的影响 Fig. 9 Effect of average pore diameter on transverse shear performance

 图 10 平均孔径对腹板的破坏模式的影响 Fig. 10 Effect of average pore diameter on failure mode of webs
5 结　语

1）泡沫铝填充可显著增强空心夹层板的横向剪切性能，其剪切失效过程可分为弹塑性变形、坍塌破坏、致密增强和完全失效4个阶段；

2）腹板抗弯能力是影响夹层板横向剪切强度的主要因素，在夹层板空腔中填充泡沫铝能够对板格形成有效的内部支撑，并使腹板出现更高阶的屈曲变形模式；

3）在泡沫铝材料参数中，孔隙率的减小可提高复合夹层板的横向剪切强度，孔洞平均直径对剪切强度影响较小。

 [1] 应程成. 论船舶结构中绿色制造工艺的设计及应用[J]. 技术与市场, 2021, 28(5): 128+130. YING C C. Design and application of green manufacturing technology in ship structure[J]. Technology and Market, 2021, 28(5): 128+130. [2] 马曙光, 周佳. 铝合金与船舶及海洋工程轻量化设计[J]. 中国海洋平台, 2017, 32(1): 15-20. MA S G, ZHOU J. Aluminum application and lightweight optimization in ship and offshore structure design[J]. China Offshore Platform, 2017, 32(1): 15-20. DOI:10.3969/j.issn.1001-4500.2017.01.003 [3] HE W T, LIU J X, WANG S Q, et al. Low-velocity impact behavior of X-frame core sandwich structures - experimental and numerical investigation[J]. Thin-Walled Structures, 2018, 131: 718-735. DOI:10.1016/j.tws.2018.07.042 [4] ZHANG C Z, CHENG Y S, ZHANG P, et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading[J]. Engineering Structures, 2017, 151: 459-471. DOI:10.1016/j.engstruct.2017.08.039 [5] METSCHKOW B. Sandwich panels in shipbuilding[J]. Polish Maritime Research, 2006, 5-8. [6] YAN L L, SU P B, HAN Y G, et al. Effects of aluminum foam filling on compressive strength and energy absorption of metallic Y-shape cored sandwich panel[J]. Metals, 2020, 10(12). [7] 赵颖, 杨兆瀚, 石晓东. 泡沫铝材料提升游艇耐撞性的数值分析[J]. 山西建筑, 2018, 44(31): 29-32. ZHAO Y, YANG Z H, SHI X D. Numerical analysis for improving yacht crashworthiness by aluminum foam[J]. Shanxi Architecture, 2018, 44(31): 29-32. DOI:10.3969/j.issn.1009-6825.2018.31.016 [8] CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering, 2012, 43: 6-15. DOI:10.1016/j.ijimpeng.2011.12.002 [9] 闫雷雷, 赵雪, 赵静波, 等. 泡沫铝填充金属波纹板耦合增强机理研究[J]. 稀有金属材料与工程, 2018, 44(31): 29-32. YAN L L, ZHAO X, ZHAO J B, et al. Coupling enhancement mechanism of aluminum foam-filled metallic corrugated sandwich panels[J]. Rare Metal Materials and Engineering, 2018, 44(31): 29-32. [10] 李春鹏, 张攀, 刘均, 等. 空爆载荷下功能梯度泡沫铝夹层板动响应数值仿真[J]. 中国舰船研究, 2018, 13(3): 77-84. LI C P, ZHANG P, LIU J, et al. Numerical simulation of dynamic response of functionally graded aluminum foamsandwich panels under air blast loading[J]. Chinese Journal of Ship Research, 2018, 13(3): 77-84. [11] SUN Y L, ZHANG X, SHAO Z S, et al. Image-based correlation between the meso-scale structure and deformation of closed-cell foam[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2017, 688: 27-39. DOI:10.1016/j.msea.2017.01.092 [12] 郭亚周, 刘小川, 白春玉, 等. 闭孔泡沫金属几种不同建模方法的对比性研究[J]. 航空材料学报, 2020, 40(4): 85-91. GUO Y Z, LIU X C, BAI C Y, et al. Comparative study of several different modeling methods for clossed-cell metal foam[J]. Journal of Aeronautical Materials, 2020, 40(4): 85-91.