﻿ 复合材料防滑衬垫摩擦性能要求及影响因素试验分析
 舰船科学技术  2022, Vol. 44 Issue (8): 6-11    DOI: 10.3404/j.issn.1672-7649.2022.08.002 PDF

Experimental analysis of friction performance requirements and influencing factors of composite anti-skid pads
CHAI Song-lin, HOU Hai-liang, BAI Xue-fei, LI Yong-qing, LIN Yuan-zhi
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: In order to solve the problem of slipping and side movement during the process of armored vehicles entering and exiting the docking bay, this paper conducts a theoretical analysis of the sliding motion process of the wet friction contact surface between the armored vehicle and the docking bay deck, and determines the critical sliding friction coefficient required during the loading process of the armored vehicle. According to the movement state of the armored vehicle in and out of the dock and the service environment of the liner, the liner structure design was completed. After considering various influencing factors, 16 sets of liner samples were prepared for friction performance testing, and the optimal liner plan was determined accordingly. Its wet friction coefficient can reach 0.87, and the mass wear amount is 0.284 g.
Key words: slip characteristics     theoretical analysis     orthogonal test     performance test
0 引　言

1 典型装备进出坞舱滑移特性理论分析

1.1 装甲车上坡受力分析计算

 图 1 装甲车上坡受力分析 Fig. 1 Force analysis of armored vehicle uphill

 ${F}_{t}-{F}_{i}-{F}_{j}-{F}_{k}-mg{\rm{sin}}\alpha =m{a}_{r} 。$ (1)

1.2 船体摇荡惯性力分析

 图 2 船体横摇受力分析图 Fig. 2 Analysis diagram of hull rolling force

 ${F}_{\varphi ny} = m {a}_{\varphi n} {\rm{sin}}\alpha = m {{w}_{\varphi }}^{2}{y}_{0} ，$ (2)
 ${F}_{\varphi nz} = m {a}_{\varphi n} {\rm{cos}}\textit{α}= m {{w}_{\varphi }}^{2}{z}_{0} ，$ (3)
 ${F}_{\varphi \tau y} = m {a}_{\varphi \tau } {\rm{cos}}\alpha = m {{w}_{\varphi }}^{2}{\varphi }_{m}{z}_{0} ，$ (4)
 ${F}_{\varphi \tau z} = m {a}_{\varphi \tau } {\rm{sin}}\alpha = m {{w}_{\varphi }}^{2}{\varphi }_{m}{y}_{0} 。$ (5)

 ${F}_{\theta nx} = m {a}_{\theta n} {\rm{sin}}\alpha = m {{w}_{\theta }}^{2}{x}_{0} ，$ (6)
 ${F}_{\theta nz} = m {a}_{\theta n} {\rm{cos}}\alpha = m {{w}_{\theta }}^{2}{z}_{0} ，$ (7)
 ${F}_{\theta \tau x} = m {a}_{\theta \tau } {\rm{cos}}\alpha = m {{w}_{\theta }}^{2}{\theta }_{m}{z}_{0} ，$ (8)
 ${F}_{\theta \tau z} = m {a}_{\theta \tau } {\rm{sin}}\alpha = m {{w}_{\theta }}^{2}{\theta }_{m}{x}_{0} 。$ (9)

 ${F}_{x}= {F}_{\theta \tau x} +mg{\rm{sin}} {\theta }_{m} = m {{w}_{\theta }}^{2}{\theta }_{m}{z}_{0}+mg{\rm{sin}}{\theta }_{m} ，$ (10)
 ${F}_{y}={F}_{\varphi \tau y} +mg{\rm{sin}} {\varphi }_{m} = m {{w}_{\varphi }}^{2}{\varphi }_{m}{z}_{0}+mg{\rm{sin}}{\varphi }_{m} ，$ (11)
 $\begin{split} {F}_{z}=&mg{\rm{cos}}{\varphi }_{m}{\rm{cos}}{\theta }_{m} -（ {F}_{\varphi \tau z} + {F}_{\theta \tau z} ） =\\ &mg{\rm{cos}}{\varphi }_{m}{\rm{cos}}{\theta }_{m}- （m {{w}_{\varphi }}^{2}{\varphi }_{m}{y}_{0} +m {{w}_{\theta }}^{2}{\theta }_{m}{x}_{0} ） \end{split}。$ (12)

1.3 装甲车受力综合分析计算

 ${F}_{t}-{F}_{i}-{F}_{x}=0 。$ (13)

 ${F}_{x}= {F}_{\theta \tau x} +mg{\rm{sin}} （\alpha +\theta ） = m {{w}_{\theta }}^{2}{\theta }_{m}{z}_{0} + mg{\rm{sin}}（\alpha +{\theta }_{m}），$
 $\begin{split} {F}_{z}=&mg{\rm{cos}}\varphi {\rm{cos}}（\alpha +\theta ）- （ {F}_{\varphi \tau z} + {F}_{\theta \tau z} ） =\\ & mg{\rm{cos}}{\varphi }_{m}{\rm{cos}}（\alpha +{\theta }_{m}） -（m {{w}_{\varphi }}^{2}{\varphi }_{m}{y}_{0} +m {{w}_{\theta }}^{2}{\theta }_{m}{x}_{0} ） \end{split}，$
 ${F}_{i}= \textit ƒ mg{\rm{cos}}（\alpha +{\theta }_{m}）{\rm{cos}}{\varphi }_{m} \text{。}$

 ${\mu }_{\mathrm{履}\mathrm{带}}=0.4334 \text{，} {\mu }_{\mathrm{轮}\mathrm{式}}=0.4514 。$

 ${\mu }_{\mathrm{履}\mathrm{带}}=0.4469 \text{，} {\mu }_{\mathrm{轮}\mathrm{式}}=0.4641 ；$

 ${\mu }_{\mathrm{履}\mathrm{带}}=0.4541 \text{，} {\mu }_{\mathrm{轮}\mathrm{式}}=0.4720 。$
2 复合材料防滑衬垫影响因素分析及试验验证

 图 3 衬垫结构示意图 Fig. 3 Schematic diagram of liner structure

2.1 多影响因素下衬垫制备方案

2.2 复合材料防滑衬垫试样制备

 图 4 聚氨酯改性环氧胶流平 Fig. 4 Polyurethane modified epoxy adhesive leveling

 图 5 不同目数金刚砂完全覆盖聚氨酯改性环氧胶 Fig. 5 Different meshes of emery completely cover the polyurethane modified epoxy adhesive

 图 6 衬垫试样实物图 Fig. 6 Physical image of gasket sample
2.3 衬垫试样摩擦性能试验验证

 图 7 湿摩擦系数测试图 Fig. 7 Wet friction coefficient test

 图 8 质量磨损率测试试样长度、宽度、厚度尺寸 Fig. 8 The length，width and thickness of test specimens for mass wear rate

1）对于测试结果湿摩擦系数，影响因素的主次顺序为金刚砂数目＞复合材料底板类型＞树脂配方；

2）对于测试结果质量磨损量，影响因素的主次顺序为金刚砂数目＞树脂配方＞复合材料底板类型。

3 结　语

1）装甲车进出坞舱过程中，斜坡板位置处装甲车所需滑动摩擦系数最大，其中履带式装甲车所需临界滑动摩擦系数为0.4541，轮式装甲车所需临界滑动摩擦系数为0.4720。

2）复合材料防滑衬垫制样最优方案为②号树脂配方、碳纤维复合材料底板、20～40目金刚砂，其湿摩擦系数可达0.87，质量磨损量为0.284 g，其中衬垫湿摩擦系数大于装甲车进出坞舱过程理论分析中所需要的临界滑动摩擦系数，达到预期目标。

 [1] 李晓文. 新型坞载登陆艇概念设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [2] 孙丽娜. 大型构件海上运输安全性分析[D]. 大连: 大连理工大学, 2006. [3] 唐世友. 船舶载运特大型车辆的系固研究[D]. 大连: 大连海事大学, 2012. [4] 宋世红, 张学卿. 防滑涂料概论[J]. 中国涂料, 2009, 24(7): 60-63. SONG Shi-hong, ZHANG Xue-qing. Introduction to anti-slip coatings[J]. China Paint, 2009, 24(7): 60-63. DOI:10.3969/j.issn.1006-2556.2009.07.017 [5] 仲晓萍. 我国特种涂料发展现状及未来趋势[J]. 现代化工, 2019, 39(12): 7-10. ZHONG Xiao-ping. Development status and future trends of my country's special coatings[J]. Modern Engineering, 2019, 39(12): 7-10. [6] 邓琦, 王同良, 白杨, 等. 高耐磨甲板防滑涂层的制备及其性能研究[J]. 中国舰船研究, 2020, 15(4): 82-88. DENG Qi, WANG Tong-liang, BAI Yang, et al. Preparation and performance of anti-skid coating for high wear-resistant deck[J]. Chinese Journal of Ship Research, 2020, 15(4): 82-88. [7] 宋振伟, 白杨, 姜秀杰, 等. 甲板防滑涂层去除技术的研究现状[J]. 涂料工业, 2020, 50(9): 82-87. SONG Zhen-wei, BAI Yang, JIANG Xiu-jie,et al. Research status of anti-skid coating removal technology on deck[J]. Paint Industry, 2020, 50(9): 82-87. [8] 曹卫锋. 车辆动载作用下长大上坡沥青路面力学响应研究[D]. 西安: 长安大学, 2014. [9] 邵清波. 纵坡工况下汽车轨迹预测算法的研究[D]. 长春: 吉林大学, 2015. [10] 杨守威. 装载重大件货物系固方式研究[D]. 武汉: 武汉理工大学, 2010. [11] 王兆麒. 驳运重大件货物系固绑扎方案安全校核方法研究[D]. 大连: 大连理工大学, 2016. [12] 陈益平, 刘宝新, 袁沐. 船载货物的惯性力研究[J]. 军事交通学院学报, 2019, 21(1): 90-94. CHEN Yi-ping, LIU Bao-xin, YUAN Mu. Research on the inertial force of ship cargo[J]. Journal of the Academy of Military Transportation, 2019, 21(1): 90-94. [13] 邓琦, 徐金文, 高新华, 等. 舰船甲板防滑涂料技术现状及发展趋势[J]. 中国舰船研究, 2013, 8(2): 111-116. DENG Qi, XU Jin-wen, GAO Xin-hua, et al. The status quo and development trend of anti-skid coating technology on ship deck[J]. China Ship Research, 2013, 8(2): 111-116. DOI:10.3969/j.issn.1673-3185.2013.02.020 [14] 曾飞, 钱艳峰, 胡凯强, 等. 粉煤灰基防滑粒料的改性及其应用研究[J]. 化工新型材料, 2019, 47(7): 222-225+231. ZENG Fei, QIAN Yan-feng, HU Kai-qiang,et al. Modification and application of fly ash-based anti-skid pellets[J]. New Chemical Materials, 2019, 47(7): 222-225+231. [15] 江林峰, 陈雷, 李一新. Al2O3防滑粒料对防滑涂层防滑及磨损性能的影响 [J]. 涂料工业, 2014, 44(1): 6-11. JIANG Lin-feng, CHEN Lei, LI Yi-xin. The influence of Al2O3 anti-skid pellets on the anti-skid and wear properties of anti-skid coatings [J]. Paint Industry, 2014, 44(1): 6-11. [16] 王树源, 李晏, 张毅科. 混凝土正交试验结果极差分析与方差分析方法对比[J]. 建材发展导向, 2016, 14(12): 44-48. WANG Shu-yuan, LI Yan, ZHANG Yi-ke. Comparison of range analysis and variance analysis of concrete orthogonal test results[J]. Building Materials Development Orientation, 2016, 14(12): 44-48. [17] 范步高. 正交试验方差分析的Excel通用计算与应用[J]. 中国医药工业杂志, 2011, 42(10): 793-795. FAN Bu-gao. General calculation and application of Excel for analysis of variance of orthogonal experiment[J]. Chinese Journal of Pharmaceutical, 2011, 42(10): 793-795. DOI:10.3969/j.issn.1001-8255.2011.10.019