﻿ 基于模糊控制的UUV编队避障研究
 舰船科学技术  2022, Vol. 44 Issue (7): 98-103    DOI: 10.3404/j.issn.1672-7649.2022.07.019 PDF

1. 中国船舶集团有限公司第七〇五研究所昆明分部，云南 昆明, 650118;
2. 中国科学院沈阳自动化研究所, 辽宁 沈阳, 110017

Research on obstacle avoidance of UUV formation based on fuzzy control
YANG Fang1, CHEN Yan-yong1, ZENG Jun-bao2, LIU Feng1, ZHAO Xu1
1. The 705 Research Institute of CSSC, Kunming 650101, China;
2. Shenyang Institute of Automation Chinese Academy of Science, Shenyang 110017, China
Abstract: Aiming at the problem of UUV formation obstacle-avoidance in the complex underwater environment, this paper proposes an UUV formation obstacle-avoidance control method based on fuzzy control. Inspired by the herds’ behavior mechanism, the V-shaped formation design is adopted, the leader-follower method is selected to carry out formation control and according to the obstacle-avoidance mechanism of the herd, designing the formation split obstacle-avoidance algorithm based on fuzzy control. Simulation by considering different communication conditions, the results show that the proposed method can effectively solve the formation control and obstacle-avoidance problems of UUV formation under obstacle environment. Finally, the lake experiment was carried out in a typical narrow, long and very narrow obstacle environment.
Key words: UUV     formation control     fuzzy control     formation obstacle avoidance     communication delay
0 引　言

1 基于模糊控制的UUV编队避障控制 1.1 领航-跟随型编队控制的运动学模型

 图 1 领航-跟随型编队控制示意图 Fig. 1 Schematic diagram of the leading-following formation obstacle avoidance

UUV的运动学水平面数学模型为：

 $\left\{ \begin{gathered} \dot x = \cos (\theta )u - \sin (\theta )u ，\hfill \\ \dot y = \sin (\theta )u + \cos (\theta )u ，\hfill \\ \dot \theta = r 。\hfill \\ \end{gathered} \right.$ (1)

 图 2 领航-跟随型编队控制的运动学模型 Fig. 2 Kinematics model of pilot-following formation control

${R_L}$ 是领航者， ${R_1}$ ${R_2}$ 是跟随UUV， ${R_L}$ ${R_1}$ 之间期望的距离和方位角为 ${(l_{iL}^d,\varphi _{iL}^d)^{\rm{T}}}$ 。结合 ${R_1}$ 的位姿经几何坐标变换，得到 ${R_i}$ 的期望位姿。

 $\left\{ \begin{gathered} {x_i}^d = - l_{iL}^d\cos (\varphi _{_{iL}}^d - {\theta _L}(t)) + {x_L}(t) ，\hfill \\ {y_i}^d = - l_{iL}^d\sin (\varphi _{_{iL}}^d - {\theta _L}(t)) + {y_L}(t) ，\hfill \\ \theta _i^d = {\theta _L} 。\hfill \\ \end{gathered} \right.$ (2)

1.2 基于模糊控制的编队避障方法 1.2.1 设计模糊控制器

 图 3 模糊控制器结构 Fig. 3 Fuzzy controller structure
1.2.2 领航UUV的避障算法

 图 4 领航UUV避障方法示意图 Fig. 4 Pilot UUV obstacle avoidance method
1.2.3 跟随UUV的避障算法

 图 5 跟随UUV避障方法示意图 Fig. 5 Schematic diagram of following UUV obstacle avoidance method
1.2.4 UUV编队避障算法

 图 6 UUV编队避障控制流程图 Fig. 6 UUV formation obstacle avoidance control flow chart
2 仿真试验

2.1 试验通信良好条件下的编队避障仿真

 图 7 编队队形形成图 Fig. 7 Formation diagram

 图 8 通信良好条件下UUV编队避障仿真 Fig. 8 UUV formation obstacle avoidance simulation under good communication conditions

1）初始队形形成阶段（O-A），UUV编队形成三角形编队，并稳定航行；

2）编队避障阶段（A-B），编队在A点检测到障碍后采用拆分避障策略连续避开避障物，在B点结束；左右两侧跟随者因躲避障碍物与领航者距离有所变化；

3）恢复队形抵达目标点阶段（B-Target），躲避障碍物后，在B点编队恢复队形，在C点再次变换队形穿过两障碍物，并顺利抵达目标点。

2.2 试验通信延迟条件下的编队避障仿真

 $f = ({R_i} - dd)/dd ，$ (3)

 图 9 延迟时间动态变化下UUV编队避障仿真 Fig. 9 Simulation of UUV formation obstacle avoid ance under dynamic delay time variation

 图 10 不同延迟时间下UUV队形偏离度 Fig. 10 UUV formation error under different delay times

 ${X_T} = X - v \times {T_d}\sin \theta ，$ (4)
 ${Y_T} = Y - v \times {T_d}\cos \theta 。$ (5)

 图 11 通信延迟处理前后对比图 Fig. 11 Comparison of communication delay processing before and after

3 编队避障试验 3.1 试验方案

 图 12 试验方案示意图 Fig. 12 Schematic diagram of test plan

3.2 分析与结论

 图 13 编队避障运动轨迹图 Fig. 13 Formation obstacle avoidance movement trajectory diagram

 图 14 编队队形误差 Fig. 14 Error of the formation

4 结　论

 [1] 潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(1): 44-51. PAN Guang, SONG Bao-wei. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea system, 2017, 25(1): 44-51. [2] 严浙平, 等. 多UUV协调控制技术研究现状及发展趋势[J]. 水下无人系统学报, 2019, 27(3): 226-231. YAN Zhe-ping, LIU Xiang-ling. Research status and development trend of multi-uuv coordinated control technology: a review[J]. Journal of Unmanned Undersea System, 2019, 27(3): 226-231. [3] 李娟, 马涛, 刘建华. 基于领航者的多UUV协调编队滑模控制[J]. 哈尔滨工程大学学报, 2018, 39(2): 350-357. LI Juan, MA Tao. Multi-UUV coordinated formation sliding mode control based on leader[J]. Journal of Harbin Engineering University, 2018, 39(2): 350-357. [4] 张佳龙, 闫建国, 张普, 等. 基于改进人工势场的无人机编队避障控制研究[J]. 西安交通大学学报, 2018, 52(11): 112-119. ZHANG jia-long, YAN jian-guo. Study on the collision avoidance of uac cooperative formation with improved artificial potential field[J]. Journal of xi'an Jiaotong University, 2018, 52(11): 112-119. [5] 杨萍, 候静茹. 全方位移动机器人编队控制研究[J]. 机电工程, 2017, 34(7): 796-801. DOI:10.3969/j.issn.1001-4551.2017.07.021 [6] 杨之元, 段海滨, 范彦铭. 基于莱维飞行鸽群优化的仿雁群无人机编队控制器设计[J]. 中国科学: 技术科学, 2018, 48(2): 161-169. [7] 周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学: 技术科学, 2017, 47(3): 230-238. [8] SAHU B K, GUPTA M M, SUBUDHI B. Fuzzy separation potential function based flocking control of multiple AUVs[C]//In Joint IEEE IFSA World Congress NAFIPS Annual Meeting. Edmonton: IEEE, 2013: 1429–1434.