﻿ 静水压力下复合材料夹层圆柱壳承载特性分析
 舰船科学技术  2022, Vol. 44 Issue (7): 20-24    DOI: 10.3404/j.issn.1672-7649.2022.07.004 PDF

1. 海军勤务学院 海防工程系，天津 300450;
2. 海军工程大学 舰船与海洋学院，湖北 武汉 430000

Analysis of bearing characteristics of composite sandwich cylindrical shell under hydrostatic pressure
CHEN Yue1, LI Hua-dong2
1. Departement of Coastal Defense Engineering, Naval Logistics Academy, Tianjin 300450, China;
2. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430000, China
Abstract: Based on the finite element software Abaqus, this paper uses a three-dimensional cohesive element to simulate the interface between the skin and the core, and establishes a prediction method for the ultimate bearing capacity of a composite sandwich cylindrical shell under hydrostatic pressure. The numerical calculation and the experimental results are in good agreement. The numerical model and accurate feasibility of calculation method. Furthermore, the influence of the modulus of the cylindrical shell core layer of the floating body/sound-absorbing hybrid core material sandwich composite material on the load-bearing characteristics was studied. Based on the integrated calculation of Isight and Abaqus, the optimization goal is to improve the critical instability load, and the surface winding method of the composite sandwich cylindrical shell under deep water static pressure is optimized to obtain the optimal surface winding angle. The research results have certain reference value and guidance for the underwater application and research of composite sandwich cylindrical shells.
Key words: composite material     cylindrical shell     core layer     winding method
0 引　言

1 复合材料夹层圆柱壳极限承载能力预报方法 1.1 有限元模型

1.2 承载特性分析

 图 1 复合材料夹层圆柱壳模型线性失稳模态 Fig. 1 Linear buckling mode of the sandwich composite cylindrical shell

 图 2 外蒙皮径向挠度 Fig. 2 Radial deflection of the outer skin

 图 3 外蒙皮轴向位移 Fig. 3 Axial displacement of the outer skin

 ${D_x}\frac{{{\partial ^4}w}}{{\partial {x^4}}} + 2H\frac{{{\partial ^4}w}}{{\partial {x^2}\partial {y^2}}} + {D_y}\frac{{{\partial ^4}w}}{{\partial {y^4}}} = p - kw 。$

 图 4 外蒙皮主应力云图 Fig. 4 Core transverse shear stress

 图 5 内蒙皮主应力云图 Fig. 5 Core transverse shear stress

 图 6 芯层合成应力 Fig. 6 Core Mises stress

 图 7 芯层横向剪切应力 Fig. 7 Core transverse shear stress

2 复合材料夹层圆柱壳承载能力影响因素分析 2.1 芯层模量影响

 图 8 芯层模量对极限承载的影响规律 Fig. 8 Influence of core modulus on the buckling load

 图 9 混杂芯层配比与极限承载关系曲线 Fig. 9 The relation of mixed core and limited load
2.2 表层缠绕方式影响

 图 10 优化流程图 Fig. 10 The optimization process

 图 11 铺层方式与临界载荷间的关系曲线 Fig. 11 Curve overlay mode and the critical load between
3 结　语

1）提高复合材料夹层圆柱壳芯层模量，可明显提高结构极限承载能力。随芯层模量提高，其提升极限载荷的贡献效果逐渐减弱，且结构失效模式会发生变化，环向失稳波数逐渐减少。

2）采用Isight与Abaqus集成运算，以临界失稳载荷最大为优化目标，对深水静压载荷作用下的复合材料夹层圆柱壳模型表层缠绕方式进行优化设计，得到模型结构最佳缠绕方式为环向加螺旋缠绕，缠绕角度为 $\left[ {{\text{9}}{{\text{0}}^ \circ }_2{\text{/}}{{\left( { \pm {\text{30}}} \right)}_2}{\text{/9}}{{\text{0}}^ \circ }_2} \right]$

 [1] 王晓旭, 张典堂, 钱坤, 等. 深海纤维增强树脂复合材料圆柱耐压壳力学性能的研究进展[J], 复合材料学报, 2020, 37(1): 16–26. [2] 罗珊, 李永胜, 王纬波. 非金属潜水器耐压壳发展概况及展望[J]. 中国舰船研究, 2020, 15(4): 9-18. [3] 李彬, 庞永杰, 程妍雪. 基于铺层参数的复合材料耐压壳协同优化设计[J]. 上海交通大学学报, 2017(3): 308-313. [4] 沈克纯, 潘光, 姜军, 等. 静水压力下纤维缠绕圆柱壳体的稳定性分析[J]. 西北工业大学学报, 2018, 36(5): 40-48. [5] LI Z M, QIAO P Z. Buckling and postbuckling of anisotropic laminated cylindrical shells under combined external pressure and axial compression in thermal environments[J]. Composite Structure, 2015, 119: 709-726. DOI:10.1016/j.compstruct.2014.09.039 [6] 沈克纯, 潘光, 施瑶, 等. 静水压力下碳纤维缠绕复合材料圆柱壳体应变特性及承载能力研究[J]. 西北工业大学学报, 2020, 38(5): 937-942. DOI:10.3969/j.issn.1000-2758.2020.05.003 [7] 柯仙送. 受压复合材料圆柱壳破坏的数值分析与试验研究[D]. 南京: 南京航空航天大学, 2017. [8] 王林. 深海耐压结构型式及稳定性研究[D]. 武汉: 中国舰船研究院, 2011. [9] LOPATIN A V, MOROZOV E V. Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure[J]. Composite Structures, 2015, 122(122): 209-216. [10] 陈悦, 朱子旭, 李永清, 等. 夹层复合材料耐压圆柱壳深水静压承载特性分析[J]. 海军工程大学学报, 2018, 30(2): 83-87. [11] 陈悦, 朱锡, 李华东, 等. 轴压作用下缠绕复合材料夹芯圆柱壳力学性能研究[J]. 玻璃钢/复合材料, 2016(7): 5-8. [12] 朱子旭, 李永清, 朱锡, 等. 夹芯复合材料圆柱壳在静水压力下的承载能力试验[J]. 海军工程大学学报, 2019, 31(3): 95-101. DOI:10.7495/j.issn.1009-3486.2019.03.018