﻿ 基于人工智能技术的船舶主悬架动态性能分析
 舰船科学技术  2022, Vol. 44 Issue (5): 166-169    DOI: 10.3404/j.issn.1672-7649.2022.05.036 PDF

1. 武汉理工大学，湖北 武汉 430079;
2. 重庆机电职业技术大学，重庆 402760

Analysis of dynamic performance of ship main suspension based on artificial intelligence technology
ZHENG Xiao-fa1,2
1. Wuhan University of Technology, Wuhan 430079, China;
2. Chongqing Vocational and Technical University of Mechatronics, Chongqing 402760, China
Abstract: In order to improve the navigation stability of ships, the suspension system used in the field of automobile manufacturing can be introduced to the hull, so that the hull becomes wheels, the cockpit becomes the body, and the suspension is connected to the hull and frame separately. The shock absorber in the suspension system can attenuate the impact load on the ship, and the resulting vibration will also be attenuated. As a result, the ship′s running performance is improved, and the ride comfort is greatly increased due to the reduction in vibration. Suspension systems were originally used in automobiles. When applied on ships, it is necessary to analyze the dynamic performance of the suspension to see if it meets the sailing needs of the ship. In order to make the dynamic performance analysis results more accurate, advanced artificial intelligence technology can be applied.
Key words: artificial intelligence     ship     main suspension     dynamic performance
0 引　言

1 船舶主悬架的性能要求

2 基于人工智能技术的船舶主悬架运动学分析 2.1 主悬架与船体运动

 ${F}=3 {n}-2 {p}_{{L}}-{P}_{{H}} \text{。}$

 $l_{1}+s_{1}=l_{2}+s_{2} \text{，}$
 图 1 减震器与船体的组成结构图 Fig. 1 The structure diagram of the shock absorber and the hull
2.2 构建运动学模型

 图 2 运动学模型几何信息分布图 Fig. 2 Kinematics model geometric information distribution map

2.3 主悬架的运动状态

2.4 仿真结果

 图 3 运动学仿真中船体的位移与时间曲线 Fig. 3 Displacement and time curve of ship hull in kinematic simulation

 图 4 运动学仿真中船体的速度与时间曲线 Fig. 4 Velocity and time curve of ship hull in kinematic simulation

3 船舶主悬架的动力学仿真 3.1 主悬架总成受力

3.2 动力学建模

 ${F}_{{a}}=-{C}(\mathrm{d} b/ \mathrm{d}t) \text{。}$

3.3 仿真结果

 图 5 船体在冲击荷载作用下的动力学响应曲线 Fig. 5 Dynamic response curve of hull under impact load

 图 6 低冲击力下的船舶稳定性参数分布曲线 Fig. 6 Distribution curve of ship stability parameters under low impact force

 图 7 高冲击力下的船舶稳定性参数分布曲线 Fig. 7 Distribution curve of ship stability parameters under high impact force

4 结　语

 [1] 王默, 度红望, 熊伟. 小型救助船舶主动式液压互联悬架系统的设计与仿真[J]. 液压与气动, 2021(8): 138-144. DOI:10.11832/j.issn.1000-4858.2021.08.020 [2] 苏云, 胡勇, 苏芳艳. 基于数据库和人工智能的船舶航行性能设计和优化[J]. 舰船科学技术, 2021, 42(20): 46-48. [3] 朱木清. 基于人工智能的船舶内部齿轮机构转速控制研究[J]. 舰船科学技术, 2021, 42(16): 73-75.