﻿ 船载三自由度并联稳定平台的设计及运动学分析
 舰船科学技术  2022, Vol. 44 Issue (5): 154-157    DOI: 10.3404/j.issn.1672-7649.2022.05.033 PDF

1. 大连海事大学 船舶电气工程学院，辽宁 大连 116026;
2. 大连东软信息学院 智能与电子工程学院，辽宁 大连 116023

Design and kinematics analysis of 3-DOF ship-borne parallel stabilization platform
TU Ya1,2, DU Jia-lu1, LIU Wen-ji1
1. School of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China;
2. School of Intelligence and Electrical Engineering, Dalian Neusoft University of Information, Dalian 116023, China
Abstract: Aiming at the influence of six degrees of freedom on shipborne equipment in the ocean, a three-degree of freedom ship-borne stabilized platform was designed, which can compensates for heave, roll and pitch. The inverse kinematics characteristics of the stabilized platform are analyzed. A virtual prototype simulation system was established by Simscape using Matlab/Simulink. Posture sensor was added to the platform model. Finally, the prototype machine is made. Siemens PLC is used as the controller, and the posture of the platform is detected by the inertial navigation module and displacement sensor. The experimental results show that the 3-DOF Ship-borne Parallel Stabilized Platform designed can effectively compensate the wave attitude within a certain range.
Key words: 3-DOF parallel stabilized platform     virtual prototype     inverse kinematics
0 引　言

1 机构设计与约束分析

 图 1 并联稳定平台示意图 Fig. 1 Structure diagram of parallel stabilization platform

 图 2 约束支路示意图 Fig. 2 Structure diagram of constraint branch

 $\left\{ {\begin{array}{*{20}{l}} {{{S/ }_{{\text{i7}}}} = \left( {\begin{array}{*{20}{c}} 1&0&{0;}&0&h&0 \end{array}} \right)} ，\\ {{{{S/ }}_{{\text{i8}}}} = \left( {\begin{array}{*{20}{c}} 0&1&{0;}&{ - h}&0&0 \end{array}} \right)} ，\\ {{{{S/ }}_{{\text{i9}}}} = \left( {\begin{array}{*{20}{c}} 0&0&{1;}&0&0&0 \end{array}} \right)} ，\\ {{{{S/ }}_{{\text{i10}}}} = \left( {\begin{array}{*{20}{c}} 1&0&{0;}&0&h&{ - m} \end{array}} \right)} ，\\ {{{{S/ }}_{{\text{i11}}}} = \left( {\begin{array}{*{20}{c}} 0&1&{0;}&{ - h}&0&0 \end{array}} \right)} ，\\ {{{{S/ }}_{{\text{i12}}}} = \left( {\begin{array}{*{20}{c}} 0&0&{1;}&m&0&0 \end{array}} \right)} 。\end{array}} \right.$ (1)

 ${S/}_{i}^{\prime \prime}=\left(\begin{array}{llllll} 0 & 1 & 0 ; & -h & 0 & 0 \end{array}\right) 。$ (2)
2 逆运动学分析

 $\begin{split} & {\boldsymbol{R}} =\\ & \left[{\begin{array}{*{20}{c}} {{\text{c}}{{\text{θ }}_{\text{z}}}{\text{c}}{{\text{θ }}_{\text{y}}}}&{{\text{c}}{{\text{θ }}_{\text{z}}}{\text{s}}{{\text{θ }}_{\text{y}}}{\text{s}}{{\text{θ }}_{\text{x}}}{\text{ - s}}{{\text{θ }}_{\text{z}}}{\text{c}}{{\text{θ }}_{\text{x}}}}&{{\text{c}}{{\text{θ }}_{\text{z}}}{\text{s}}{{\text{θ }}_{\text{y}}}{\text{c}}{{\text{θ }}_{\text{x}}}{\text{ + s}}{{\text{θ }}_{\text{z}}}{\text{s}}{{\text{θ }}_{\text{x}}}} \\ {{\text{s}}{{\text{θ }}_{\text{z}}}{\text{c}}{{\text{θ }}_{\text{y}}}}|&{{\text{s}}{{\text{θ }}_{\text{z}}}{\text{s}}{{\text{θ }}_{\text{y}}}{\text{s}}{{\text{θ }}_{\text{x}}}{\text{ + c}}{{\text{θ }}_{\text{z}}}{\text{c}}{{\text{θ }}_{\text{x}}}}&{{\text{s}}{{\text{θ }}_{\text{z}}}{\text{s}}{{\text{θ }}_{\text{y}}}{\text{c}}{{\text{θ }}_{\text{x}}}{\text{ - c}}{{\text{θ }}_{\text{z}}}{\text{s}}{{\text{θ }}_{\text{x}}}} \\ {{\text{ - s}}{{\text{θ }}_{\text{y}}}}&{{\text{c}}{{\text{θ }}_{\text{y}}}{\text{s}}{{\text{θ }}_{\text{x}}}}&{{\text{c}}{{\text{θ }}_{\text{y}}}{\text{c}}{{\text{θ }}_{\text{x}}}} \end{array}} \right] 。\end{split}$ (3)

3 虚拟样机仿真系统

 图 3 虚拟样机物理模型 Fig. 3 Physical model of virtual prototype

 图 4 虚拟样机仿真系统模型 Fig. 4 Physical model of virtual prototype simulation system

 图 5 3级海况下扰动平台的三自由度变化曲线 Fig. 5 Three degrees of freedom variation of disturbed platform under three-level oceanic condition

 图 6 虚拟样机测试系统框图 Fig. 6 Structure diagram of virtual prototype simulation system

 图 7 三级海况下扰动平台各支路位移变化 Fig. 7 Displacement variation of each branch of disturbance platform under three-level oceanic condition

 图 8 稳定平台电推杆位移变化 Fig. 8 Displacement variation of electric putter of stabilization platform

 图 9 稳定平台的波浪补偿效果 Fig. 9 Wave compensation effect of stabilization platform

 图 10 稳定平台X轴、Y轴和Z轴方向位移变化 Fig. 10 Displacement variation of X axis, Y axis and Z axis of stabilization platform

 图 11 稳定平台倾斜角变化 Fig. 11 Tilt Angle variation of stabilization platform
4 样机制作及测试

5 结　语

 [1] 王宣银, 4TPS-1PS四自由度并联电动平台动力学建模与位姿闭环鲁棒控制[J], 浙江大学学报, 2009, 43(8): 1492−1496. [2] 李玉昆. 3-UPS/S并联稳定平台的性能分析与稳定补偿实验研究[C]// 秦皇岛: 燕山大学, 2018. [3] ZHAO Xing-yu, ZHAO Tie-shi, WANG Chang, et. al. Type synthesis and analysis of parallel mechanisms with sub-closed-loops, Mechanism and Machine Theory, 2018, 120: 140−165. [4] 冯志坚, 王桂莲, 吕秉锐, 等, 三自由度并联机构的设计与运动学分析[J]. 组合机床与自动化加工技术, 2020(6): 1−4.