﻿ 船舶安全通航高度测量系统设计
 舰船科学技术  2022, Vol. 44 Issue (5): 130-133    DOI: 10.3404/j.issn.1672-7649.2022.05.027 PDF

Design of ship safe navigation height measurement system
ZHANG Zhe
Wuhan Technical College of Communications, Wuhan 430070, China
Abstract: The influence of the safe distance of the ship bridge area and the water flow in the curve on the navigation safety of the ship is analyzed; This paper summarizes the security technology of ship navigation, including the width of ship navigation clearance, the safe distance between ship and pier, the water depth of channel and the radius of curvature of curve, focusing on the triangular elevation measurement technology and binocular stereo vision measurement technology. This paper constructs the ship height measurement system, and focuses on the ship target detection, contour extraction and transformation correction technology. The research of this subject has positive significance for promoting ship safety technology and promoting the development of ship height measurement system.
Key words: safe navigation of ships     height measurement     system design
0 引　言

1 船舶安全通航保障技术

 ${B_{m1}} = {B_F} + \Delta {B_m} + {P_d}\text{，}$ (2.1)
 ${B_F} = {B_s} + L\sin \beta \text{。}$ (2.2)

 $E = {K_c}{K_s}{v^{0.75}}{b^{0.56}}{h^{0.44}}\text{。}$ (2.3)

 $H = T + \Delta H\text{。}$ (2.4)

 图 1 船舶通航净空示意图 Fig. 1 Schematic diagram of ship navigation clearance

 ${k_R} = \frac{{205}}{R} + 0.7\text{。}$ (2.5)

 图 2 相对事故数量和曲率半径之间的关系 Fig. 2 Relationship between the number of relative accidents and the radius of curvature

2 船舶净空高度测量技术 2.1 三角高程测量技术

 图 3 三角高程测量方法 Fig. 3 Trigonometric leveling method

 ${H_{ab}} = S \cdot \sin \alpha + i - v\text{，}$ (3.1)

 ${H_{ab}} = S \cdot \tan \alpha + i - v + \frac{{{D^2}}}{{2R}}\left( {1 - k} \right) \text{。}$ (3.2)

2.2 双目立体视觉测量技术

 图 4 双目立体视觉测量方法 Fig. 4 Binocular stereo vision measurement method

 $\frac{{T - \left( {\left| {{X_1} - {X_2}} \right|} \right)}}{T} = \frac{{Z - f}}{Z}\text{，}$ (3.3)
 $Z = \frac{{fT}}{{\left| {{X_1} - {X_2}} \right|}}\text{。}$ (3.4)

 $x = \frac{{f{X_c}}}{{{Z_c}}}\text{，}$ (3.5)
 $y = \frac{{f{Y_c}}}{{{Z_c}}}\text{。}$ (3.6)

3 船舶高度测量系统设计

 图 5 船舶高度测量系统结构 Fig. 5 Structure of ship height measurement system

 图 6 船舶的视觉注意力检测算法 Fig. 6 Visual attention detection algorithm for ships

 图 7 PCNN算法流程 Fig. 7 PCNN algorithm flow

 $x = \frac{{{b_{11}}*\mu + {b_{12}}*v + 1}}{{{b_{31}}*\mu + {b_{32}}*v + 1}}\text{，}$ (4.1)
 $y = \frac{{{b_{21}}*\mu + {b_{22}}*v + 1}}{{{b_{31}}*\mu + {b_{32}}*v + 1}} \text{。}$ (4.2)
4 结　语

 [1] 张宝刚, 张磊. LNG船舶进出洋山港主航道的通航安全研究[J]. 航海技术, 2013(4): 15-17. DOI:10.3969/j.issn.1006-1738.2013.04.007 [2] 谢康乐, 胡金辉. 船载测高雷达在航海中的应用[J]. 中国水运, 2019(10): 45-46. [3] 喻伟, 张国庆, 陈海键. 分道通航制水域船舶的安全航行于避碰研究[J]. 2020(28): 56-60. [4] 彭国均, 翁跃宗, 熊振南, 等. 基于船舶操纵模拟器的船舶通航安全评估[J]. 船舶工程, 2008(30): 67-69. [5] 张伟, 陈洲峰. 桥区水域船舶安全通航系统研究[J]. 交通信息与安全, 2010(28): 40-43. [6] 王丹, 董亚力. 桥区水域船舶通航安全控制高度测量系统设计[J]. 舰船科学技术, 2017(39): 34-36. [7] 李龙浩, 严庆新, 翁建军, 等. 三峡坝区船舶通航安全风险演化的复杂网络模型构建[J]. 船海工程, 2021(50): 137-140. [8] 干伟东, 邓健, 李延伟. 通航隧洞内船舶安全间距模型[J]. 安全与环境学报, 2021(21): 1124-1129.