﻿ 动爆载荷作用下舱室结构毁伤效果研究
 舰船科学技术  2022, Vol. 44 Issue (5): 16-21    DOI: 10.3404/j.issn.1672-7649.2022.05.004 PDF

1. 中北大学 机电工程学院, 山西 太原 030051;
2. 海军研究院, 北京 100161

Research on damage effect of cabin structure under dynamic explosion load
WU Di1,2, YIN Jian-ping1, WANG Qi2, ZHAO Peng-duo2, LI Mao2, LI Xu-dong1,2
1. School of Mechanical and Electrical Engineering, North University of China, Taiyuan 030051, China;
2. Naval Research Academy, Beijing 100161, China
Abstract: The damage effect of cabin structure under dynamic explosion load is studied by numerical simulation method. The asymmetry of the damage effect of dynamic explosion load on cabin structure is mainly reflected in the different damage modes and degrees of positive and negative bulkheads of charge movement. Based on the simulation calculation conditions, five kinds of asymmetric failure modes of cabin structure are summarized. Based on the theory of dimension analysis, put forward a set of suitable for dynamic critical load under the action of asymmetrical cabin structure failure mode of the dimensionless number, and the dimensionless number is applied to dynamic critical load under the action of the cabin structure damage effect analysis, combined with the working condition of a large number of numerical simulation results, fitting the cabin asymmetric failure mode distribution and assessment range, has realized the dynamic critical load structure damage effect to fast prediction and evaluation of cabin.
Key words: dynamic explosion load     explosion in the cabin     failure mode     dimensionless number
0 引　言

1 数值仿真模型的建立 1.1 有限元模型

 图 1 装药舱内动爆数值仿真计算模型 Fig. 1 Numerical simulation model of dynamic explosion in charge chamber

1.2 材料模型与参数

 $\sigma {\text{ = }}\left( {A + B{\varepsilon _p}^n} \right)\left( {1 + C\ln \varepsilon _p^*} \right)\left( {1 - T_H^m} \right)。$ (1)

 $P = \left( {\gamma - 1} \right)\rho e。$ (2)

TNT采用JWL状态方程来描述炸药爆轰过程中所产生气体的急剧扩张过程，状态方程如下：

 $P = A\left( {1 - \frac{\omega }{{{R_1}v}}} \right){e^{ - {R_1}v}} + B\left( {1 - \frac{\omega }{{{R_2}v}}} \right){e^{ - {R_2}v}} + \frac{{\omega e}}{v}。$ (3)

1.3 计算结果验证

 图 2 5kg TNT舱内静爆时测点A处反射超压时程曲线 Fig. 2 Time history curve of reflection overpressure at measuring point A during static explosion in 5kg TNT chamber

 $\Delta {P_m}\left\{ {\begin{array}{*{20}{c}} {\dfrac{{1.40717}}{Z} + \dfrac{{0.55397}}{{{Z^2}}} -}\\ {\dfrac{{0.03572}}{{{Z^3}}} + \dfrac{{0.000625}}{{{Z^4}}}}，&{0.05 \leqslant Z \leqslant 0.3}，\\ {\dfrac{{0.61938}}{Z} - \dfrac{{0.03262}}{{{Z^2}}} + \dfrac{{0.21324}}{{{Z^3}}}}，&{0.3 \leqslant Z \leqslant 1.0}，\\ {\dfrac{{0.0662}}{Z} + \dfrac{{0.405}}{{{Z^2}}} + \dfrac{{0.3288}}{{{Z^3}}}}，&{1.0 \leqslant Z \leqslant 10} 。\end{array}} \right.$ (4)
 $\Delta {P_f} = 2\Delta {P_m} + \frac{{\left( {\gamma + 1} \right)\Delta {P_m}^2}}{{\left( {\gamma - 1} \right)\Delta {P_m} + 2\gamma {P_0}}}。$ (5)

2 舱室毁伤效果研究 2.1 动爆载荷特性分析

 图 3 装药各运动速度下舱内爆炸时A，B位置处正反射超压 Fig. 3 Charge chamber exploded under the speed of A and B location is reflection overpressure

2.2 舱壁破坏模式分析

2.3 舱室结构破坏模式

3 舱室结构不对称破坏模式量纲分析

3.1 静爆载荷下舱室结构破坏模式分析

Dj定义为装药舱内静爆情况下正方形舱壁破坏模式，可将装药舱内静爆毁伤情况表示为：

 ${D_j} = \left\{ {m,{L_1},{L_2},\frac{{{L_2}}}{{{L_1}}},H,{\rho _S},{c_S},\sigma ,{\rho _0},{c_0}} \right\}。$ (6)

 ${D_j} = F\left( {{\varPi _1},{\varPi _2},{\varPi _3}} \right)，$ (7)

 ${\varPi _{\text{1}}} = \frac{m}{{{H^3}{c_s}^{ - 2}\sigma }} = \frac{{m{c_s}^2}}{{{H^3}\sigma }} ，$ (8)
 ${\varPi _{\text{2}}} = \frac{{{L_{\text{1}}}}}{H} {\varPi _{\text{3}}} = \frac{{{L_{\text{2}}}}}{H} 。$ (9)

 ${D_j} = \left\{ {\frac{{m{c_s}^2}}{{{H^3}\sigma }},\frac{{{L_1}}}{H},\frac{{{L_2}}}{H},\frac{{{L_2}}}{{{L_1}}}} \right\}。$ (10)

 ${D_j} = \frac{{m{c_s}^2}}{{{H^3}\sigma }} \cdot \frac{{{H^3}}}{{{L_1}^3}} \cdot \frac{{{L_2}}}{H} \cdot \frac{{{L_1}}}{{{L_2}}} = \frac{{m{c_s}^2}}{{{L_1}^2H\sigma }} 。$ (11)

 图 4 静爆下舱室结构毁伤模式分布情况 Fig. 4 Distribution of damage mode of cabin structure under static explosion

3.2 动爆载荷下舱室结构破坏模式分析

 ${\Pi _{\text{4}}}{\text{ = }}\frac{{{v_0}}}{{{c_s}}}。$ (12)

 ${D_{d{\text{1}}}} = \frac{{m{c_s}^2}}{{{L_1}^2H\sigma }} \cdot \left( {1 + \frac{{{v_0}}}{{{c_s}}}} \right)，$ (13)

 ${D_{d{\text{2}}}} = \frac{{m{c_s}^2}}{{{L_1}^2H\sigma }} \cdot \left( {1 - \frac{{{v_0}}}{{{c_s}}}} \right)。$ (14)

 图 5 装药运动正、负向舱壁破坏模式分布 Fig. 5 Positive and negative bulkhead failure modes of charge movement are distributed

 图 6 舱室结构不对称破坏模式无量纲分区图 Fig. 6 The dimensionless zoning diagram of the failure mode of cabin structure asymmetry

 $\begin{array}{c} \left.\begin{array}{c}{D}_{d\text{1}}=\displaystyle\frac{m{c}_{s}{}^{2}}{{L}_{1}{}^{2}H\sigma }\cdot \left(1+\frac{{v}_{0}}{{c}_{s}}\right)\\ {D}_{d\text{2}}= \displaystyle\frac{m{c}_{s}{}^{2}}{{L}_{1}{}^{2}H\sigma }\cdot \left(1-\frac{{v}_{0}}{{c}_{s}}\right)\end{array}\right\}= \\ \left\{\begin{array}{cc}{D}_{d\text{1}},{D}_{d\text{2}}\leqslant \text{38}\text{.74}& \Rightarrow \text{A}{{{\text{类不对称破坏}}}},\\ \text{38}\text{.74}\leqslant {D}_{d\text{1}},{D}_{d\text{2}}\leqslant \text{39}\text{.35}& \Rightarrow \text{B}{{{\text{类不对称破坏}}}},\\ \text{39}\text{.35}\leqslant{D}_{d\text{1}},{D}_{d\text{2}}\leqslant\text{65}\text{.91}& \Rightarrow \text{C}{{{\text{类不对称破坏}}}},\\ 65.91\leqslant {D}_{d\text{1}},{D}_{d\text{2}}\leqslant 92.60& \Rightarrow \text{D}{{{\text{类不对称破坏}}}},\\ 92.60\leqslant{D}_{d\text{1}},{D}_{d\text{2}}& \Rightarrow \text{E}{{{\text{类不对称破坏}}}}。\end{array}\right.\end{array}$ (15)

4 结　语

 [1] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析[J]. 爆炸与冲击, 2007, 27(2): 151-158. HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion[J]. Explosion and Shock Waves, 2007, 27(2): 151-158. DOI:10.3321/j.issn:1001-1455.2007.02.010 [2] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究[J]. 船舶力学, 2010, 14(8): 901−907. HOU H L, ZHU X, LI W, et al Experimental studies on characteristics of blast loading when exploded inside ship cabin[J]. Journal of Ship Mechanics, 2010, 14(8): 901−907. [3] 朱建方, 王伟力, 曾亮. 舰艇舱室内爆毁伤的建模与仿真分析[J]. 系统仿真学报, 2009, 21(22): 7066-7068+7-72. ZHU J F, WANG W L, ZENG L. Modeling and simulation of damage effect of ship cabin subject to internal explosion[J]. Journal of System Simulation, 2009, 21(22): 7066-7068+7-72. [4] 孔祥韶, 吴卫国, 李晓彬, 等. 舰船舱室内部爆炸的数值模拟研究[J]. 中国舰船研究, 2009, 4(4): 7-11. KONG X S, WU W G. Numerical simulation of cabin structure under inner explosion[J]. Chinese Journal of Ship Research, 2009, 4(4): 7-11. [5] 杜志鹏, 张磊, 赵鹏铎. 实尺度舰船舱内炮弹静爆试验方法[J]. 中国舰船研究, 2018, 13(3): 103-109. DU Z P, ZHANG L, ZHAO P D. Test method for static explosion of naval artillery shell in full-scale warship cabin[J]. Chinese Journal of Ship Research, 2018, 13(3): 103-109. [6] 北京工业学院八系. 爆炸及其作用下册[M]. 北京: 国防工业出版社, 1979: 270−272. [7] 杜红棉, 王燕, 祖静, 等. 导弹动爆对模拟船舱毁伤效果试验研究[J]. 高压物理学报, 2011, 25(3): 261-267. DOI:10.11858/gywlxb.2011.03.011 [8] 邢存震, 唐恩凌, 梁德刚, 等. 密闭空间内爆炸冲击波超压特性试验研究[J]. 沈阳理工大学学报, 2017, 36(1): 33-37. DOI:10.3969/j.issn.1003-1251.2017.01.009 [9] 徐维铮, 吴卫国. 约束空间内爆超压载荷影响因素二维数值模拟[J]. 中国舰船研究, 2019, 14(2): 91-98. [10] 姚术健, 张舵, 卢芳云, 等. 多箱室结构内部爆炸损伤特性研究[J]. 兵工学报, 2015, 36(S1): 87-91. [11] BAKER, W E. Explosion in air[M]. Austin, Texas, US: University of Texas Press, 1973. [12] YAO S J, ZHANG D, LU F Y. Dimensionless numbers of dynamic response analysis of clamped square plates subjected to blast loading[J]. Archive of Applied Mechanics, 2015, 85(6): 735-744. [13] 赵亚溥. 断裂力学中的相似方法[J]. 力学进展, 1998, 28(3): 323-337. ZHAO Y B. Similarity method in fracture mechanics[J]. Advances in Mechanics, 1998, 28(3): 323-337. DOI:10.6052/1000-0992-1998-3-J1998-148