﻿ 多腐蚀球形耐压壳屈曲特性研究
 舰船科学技术  2022, Vol. 44 Issue (5): 7-10    DOI: 10.3404/j.issn.1672-7649.2022.05.002 PDF

Buckling characteristics of pressurized multi-corroded spherical shell
ZHU Yong-mei, ZHOU Xiang, LIN Hai-chao, ZHANG Jian
Jiangsu University of Science and Technology, Zhengjiang 212003, China
Abstract: The buckling of a multi - corroded spherical pressure shell was studied under uniform external pressure. The local corrosion was simplified to the square on the shell, and the stability of the shell was studied under the conditions of single corrosion, double corrosion, respectively. On this basis, the effects of corrosion area, depth and corrosion position on the load carrying capacity of spherical shell were analyzed in the double corrosion stack. The results show that the buckling load of the double corrosion stack spherical shell is decreased by 33.4%, and the effect of the corrosion area and depth on the bearing capacity is higher than that of the corrosion location.
Key words: corrosion     pressure spherical shell     buckling     single corrosion     double corrosion
0 引　言

1 多腐蚀球形耐压壳屈曲分析 1.1 单腐蚀和双腐蚀缺陷球壳几何模型

 图 1 单局部腐蚀开孔耐压球壳模型 Fig. 1 Model of single-local corroded perforated pressure spherical shell

 图 2 双局部腐蚀开孔耐压球壳模型 Fig. 2 Model of double-local corroded perforated pressure spherical shell
1.2 有限元模型

 图 3 单腐蚀球壳模型网格划分及约束 Fig. 3 Grid division and constraints of single corroded spherical shell model
1.3 屈曲分析

2 双叠加腐蚀参数对球壳屈曲的影响

3 结　语

1）在双局部腐蚀球壳中，双腐蚀并立的腐蚀缺陷球壳和单腐蚀球壳相比，不仅没有降低整体稳定性，反而有些许的提升。双腐蚀叠加球壳则屈曲载荷下降了33.4%，证明了叠加腐蚀的巨大危害，在工程中需引起关注和警惕。

2）在双局部腐蚀叠加开孔球壳中，当腐蚀面积和深度一定时，大、小腐蚀缺陷同心时承载能力最差。叠加腐蚀球壳的承载能力随着小腐蚀缺陷的深度增加而下降，特别是当腐蚀面积为15°×15°时，下降幅度为38.9%，近乎是直线下降。

3）当腐蚀深度一定时，球壳的屈曲载荷随着球壳腐蚀范围的增加而降低，当tc/t0 $=0.3$ 时，腐蚀面积由5°×5°增大到15°×15°时，球壳的屈曲载荷下降了26.2%，可以发现腐蚀面积的影响随着腐蚀深度的加大而不断增大。

 [1] MA Q L, ZHU Y M, LIANG W, et al.. Buckling and strength of an externally pressurized spherical shell with reinforced opening[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 11-19. DOI:10.1016/j.ijpvp.2018.05.010 [2] CUI W C. Progress in human occupied vehicle research[J]. Science, 2017, 69(4): 4-8. [3] ZHANG J, ZHANG M, TANG W X. Buckling of spherical shells subjected to external pressure[J]. Thin-walled Structures, 2017(2): 58-64. [4] 王芳, 杨青松, 胡勇, 等. 全海深载人潜水器载人舱缩比结构模型试验研究[J]. 中国造船, 2018, 59(2): 62-71. DOI:10.3969/j.issn.1000-4882.2018.02.007 [5] BŁACHUT J. Buckling of corroded torispherical shells under external pressure [C]// Proceedings of the ASME 2018 Pressure Vessel and Piping Conference, Czech Republic: Prague, 2018. [6] BŁACHUT J. Load bearing of corroded shells under external/internal pressure[J]. Journal of Structural Integrity and Maintenance, 2018, 3(4): 217-226. DOI:10.1080/24705314.2018.1535752 [7] BŁACHUT J, D. Sala. Buckling of corroded metallic domes under external pressure [C]//Proceedings of the 29th International Ocean and Polar Engineering Conference, Hawaii: USA, 2019. [8] ZHANG J, WANG Y, TANG W, et al.. Buckling of externally pressurised spherical caps with wall-thickness reduction[J]. Thin-Walled Structures, 2019, 136: 129-137. DOI:10.1016/j.tws.2018.12.005 [9] MACKAY JR, SMITH MJ, VAN KEULEN F, et al. Experimental investigation of the strength and stability of submarine pressure hulls with and without artificial corrosion damage[J]. Marine Structures, 2010, 23: 339-359. DOI:10.1016/j.marstruc.2010.06.001 [10] INOUE K, TAKAHASHI K, ANDO K, et al. Finite element analysis on the failure behavior of straight pipe with wall thinning[J]. Pressure Vessel and Piping Codes and Standards, 2004, 480: 1-7. [11] MADEW C, WILKES M, CHARLES R, et al. First Estimate plastic collapse solutions for flat and torispherical ended pressure vessels subjected to extensive corrosion wall thinning [C]// Proceedings of the ASME 2012 Pressure Vessels & Piping Conference, Canada: Toronto, 2012. [12] 邱昌贤, 万正权, 黄进浩. 考虑腐蚀减薄的球壳开孔结构随机有限元分析[J]. 船舶力学, 2013, 17(11): 1269-1277. DOI:10.3969/j.issn.1007-7294.2013.11.007 [13] HAN C J, ZHANG H. Failure pressure analysis of the pipe with inner corrosion defects by FEM[J]. International journal of electrochemical science, 2016, 11(6): 5046-5062. [14] SUN J, CHENG Y F. Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines[J]. Engineering Structures, 2018, 278-286. [15] 王战辉, 马向荣, 高勇, 等. 双点腐蚀缺陷油气管道剩余强度[J]. 化工科技, 2019, 27(1): 9-13. DOI:10.3969/j.issn.1008-0511.2019.01.003 [16] 王战辉, 马向荣, 范晓勇, 等. 含局部减薄缺陷管道剩余强度和剩余寿命的分析预测[J]. 化工机械, 2019, 46(1): 89-93. DOI:10.3969/j.issn.0254-6094.2019.01.024 [17] China Classification Society. Specification for the entry and construction of diving systems and submersible [S]. Beijing: People Traffic Press, 1996. [18] ZHANG Xu-yun, HAN Jun, XU Zi-yi, et al. Study on residual strength and remaining life of externally-corroded pipelines based on finite element aanlysis [J]. Chemical Machinery, 2013, 40(5): 639-641. [19] SULTANA S, WANG Y, SOBEY A J, et al. Influence of corrosion on the ultimate compressive strength of steel plates and stiffened panelsq[J]. Thin-Walled Structures, 2015, 96: 95-104. DOI:10.1016/j.tws.2015.08.006 [20] HUANG Y, ZHANG Y, LIU G, et al. Ultimate strength assessment of hull structural plate with pitting corrosion damnification under biaxial compression[J]. Ocean Engineering, 2010, 37(17): 1503-1512. [21] 马青丽. 深海耐压球壳开孔加强设计及试验研究[D]. 镇江: 江苏科技大学, 2018. [22] 张建, 高杰, 王纬波, 等. 深海球形耐压壳力学特性研究[J]. 中国造船, 2015(4): 129-140. DOI:10.3969/j.issn.1000-4882.2015.04.014 [23] European Committee for Standardization. Strength and stability of shell structures: EN 1993-1-6 [S]. EN Special Publication, 2007.