﻿ 近距配置声呐方位门关联分析
 舰船科学技术  2022, Vol. 44 Issue (1): 142-145    DOI: 10.3404/j.issn.1672-7649.2022.01.027 PDF

Research on bearing-door association with sonars deployed shorter distance
XU Lin-zhou, XIA Zhi-jun, FU Liu-fang
Department of Underwater Weaponry and Chemical Defense, Dalian Naval Academy, Dalian 116018, China
Abstract: Bearing-only association with two sonar systems, produces the false target (ghost), because the association ambiguity due to no distance information. Based on the bearing similarity in different sonar system for same target, bearing-door association method is proposed when two sonar systems are deployed in shorter distance. The size of bearing-door is analysis with several parameters such as sonar detection distance, systems base line length and the bearing of target. Bearing-door association method with target distance bound information is also discussed. Computer simulations show that proposed methods is validity for shorter distance deployment sonar systems.
Key words: bearing-only association     sonar target association     deployment shorter distance     bearing-door association
0 引　言

1 方位门关联方法

1.1 方位门门限的确定

 图 1 方位关联门图解 Fig. 1 Bearing door for bearing association
 $BC = \sqrt {{L_a}^2 + {L_s}^2 - 2{L_a}{L_s}\cos ( - \theta + {\sigma _{s1}})} \text{，}$ (1)

 $\cos \angle ABC = \frac{{B{C^2} + {L_s}^2 - {L_a}^2}}{{2{L_s}*BC}}，$ (2)

 $\left( {\angle ABC - {\text{π}} - {\sigma _{s2}},\theta + {\sigma _{s1}} + {\sigma _{s2}}} \right)$ (3)

 $\left( {\alpha + \angle ABC - {\text{π}} - {\sigma _{s2}},\beta + {\sigma _{s1}} + {\sigma _{s2}}} \right)$ (4)

 $BC = \sqrt {{L_a}^2 + {L_s}^2 - 2{L_a}{L_s}\cos (\theta + {\sigma _{s1}})} \text{，}$ (5)

 $\cos \angle ABC = \frac{{B{C^2} + {L_s}^2 - {L_a}^2}}{{2{L_s}*BC}}$ (6)

 $\left( {\theta - {\sigma _{s1}} - {\sigma _{s2}},\pi - \angle ABC + {\sigma _{s2}}} \right) 。$ (7)

$\theta = {30^ \circ }$ ${L_a} = 7\;000$ m， ${L_s} = 1\;000$ m， ${\sigma _{s1}} = {\sigma _{s1}} =$ ${3^ \circ }$ 为例，则声呐2的方位在声呐1的目标方位上，向逆时针转11º，顺时针转6º，形成方位门，可以看到，声呐2中关于目标的门限并不是以声呐1的目标方位为中心的。

1.2 方位门分析

 图 2 方位门与 $\theta$ 的关系图 Fig. 2 Bearing door vs bearing

 图 3 传感器作用距离 ${L_a}$ 与方位门的关系图 Fig. 3 Bearing door vs maxim distance

 图 4 基线长度 ${L_s}$ 与方位门的关系图 Fig. 4 Bearing door vs baseline distance
1.3 性能仿真

 图 5 鱼雷攻击态势仿真 Fig. 5 Situation of torpedo attack in sim

 图 6 传感器1的方位时间序列仿真 Fig. 6 Bearing-time record in sensor 1 in sim

 图 7 传感器2方位时间序列仿真及鱼雷目标方位门局部放大 Fig. 7 Bearing-time record and bearing door in sensor 1 and their larger image
2 具有距离范围的方位门关联 2.1 关联门计算

 $BC = \sqrt {{L_{low}}^2 + {L_s}^2 - 2{L_{low}}{L_s}\cos ( - \theta + {\sigma _{s1}})} ，$ (8)
 $\cos \angle ABC = \frac{{B{C^2} + {L_s}^2 - {L_{low}}^2}}{{2{L_s}*BC}} 。$ (9)

 $\angle ABC - {\text{π}} - {\sigma _{s2}} ，$ (10)

 $BD = \sqrt {{L_{up}}^2 + {L_s}^2 - 2{L_{up}}{L_s}\cos ( - \theta - {\sigma _{s1}})} \text{，}$ (11)
 $\cos \angle ABD = \frac{{B{D^2} + {L_s}^2 - {L_{up}}^2}}{{2{L_s}*BD}} ，$ (12)

 $\angle ABD - {\text{π}} + {\sigma _{s2}} 。$ (13)
2.2 关联仿真

 $(\angle ABC - {\sigma _{s2}},\angle ABD + {\sigma _{s2}}) 。$ (14)

 图 8 具有距离范围的鱼雷目标方位门关联 Fig. 8 Bearing door of torpedo target with distance scope

3 结　语

2部近距离配置的声呐，可以利用配置的特点，采用方位门关联方法，解决目标接触初期的目标定位问题，而不需要进行机动，对于平台来说，有利于其隐蔽，对于网络雷阵来说，有利于目标初步定位。在接触初期，通过方位门关联，可以进行快速的目标定位，提供早期提供信息；随着跟踪的进行，在较大定位误差的情况下，仍然可以通过具有距离范围的方位门关联，继续定位关联，解决目标接近状态下的目标跟踪问题。

 [1] DEB S, PATTIPATI K R, BAR-SHALOM Y. PASSDAT: passive sensor data association for tracking-A PC software[C]//SPIE: Signal and Data Processing of Small Targets. 1990: 274-186. [2] PATTIPATI K R, DEB S, BAR-SHALOM Y, et al. A new relaxation algorithm and passive sensor data association[J]. IEEE Transactions on AC, 1992, 37(2): 198-213. DOI:10.1109/9.121621 [3] 修建娟, 何友, 王国宏, 等. 两站无源定位系统中的多目标跟踪算法研究[J]. 电子学报, 2002, 30(12): 1763-1767. DOI:10.3321/j.issn:0372-2112.2002.12.008 [4] MA N, CHIA C W. Target localization by two fixed non-coherent passive linear arrays[J]. IEEE, 2008. [5] KADAR I. Passive multisensor multitarget feature-aided unconstrained tracking: a geometric perspective[C]//FUSION 2000: 17-24. [6] 韩崇昭, 李晨, 朱洪艳. 红外搜索跟踪系统的数据关联算法研究[J]. 控制与决策, 2008, 23(2): 171-176. DOI:10.3321/j.issn:1001-0920.2008.02.010 [7] 苏骏, 李亚安, 陈晓, 等. 双观测站水下纯方位多目标跟踪的数据关联算法[J]. 水下无人系统学报, 2018, 26(2): 115-121.