﻿ 大型邮轮耐波性能数值与试验研究
 舰船科学技术  2022, Vol. 44 Issue (1): 46-51    DOI: 10.3404/j.issn.1672-7649.2022.01.009 PDF

Numerical and experimental study on seakeeping performance of large cruise ships
LEI Zhen, LYU Hai-ning
State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Abstract: There are thousands of passengers in large-scale cruise ships, and its operation safety and riding comfort are very important, so it is necessary to carry out targeted research. In this paper, the seakeeping performance of a large cruise ship is studied by combining numerical simulation and model test. Three dimensional linear potential flow theory in time domain is applied in the numerical calculation. The experimental model is a self-propelled model with a scale of 1∶55. Firstly, this paper compares and analyzes the data of cruise calculation and test, and verifies the reliability of the research method, and then further evaluates the safety and comfort of the cruise ship under different speed, wave direction and sea conditions according to the relevant seakeeping criterion. The results show that the large cruise ship can meet the comfort criterion in the sea state 5 and below, and it is necessary to avoid sailing in the conditions of 30° and 90° in the wave direction under the higher sea conditions; Its safety and comfort also meet the standard when the sea condition is level 6 and the speed is no more than 15 kn.
Key words: large cruise ship     seakeeping performance     numerical simulation     self-propelled model test
0 引　言

1 三维线性时域势流理论

 ${\nabla }^{2}{\varPhi }\left({P},{t}\right)=0 \text{，}$ (1)

 $\frac{{\partial }^{2}{\varPhi }}{\partial {t}^{2}}+\mathrm{g}\frac{\partial {\varPhi }}{\partial z}=0 \text{，}$ (2)

 $\frac{\partial {\varPhi }}{\partial n}{|}_{{S}_{0}}={V}_{n}\left(x,y,z,t\right)=\sum _{j=1}^{6}\dot{{x}_{0j}}\left(t\right){n}_{j}\text{，}$ (3)

 $\underset{z\to -\mathrm{\infty }}{\mathrm{lim}}\nabla {\varPhi }=0 \text{或} \frac{\partial {\varPhi }}{\partial n}{|}_{z=-H}=0 \text{。}$ (4)

 ${\varPhi }\left({P},{t}\right)={{\varPhi }}_{I}+{{\varPhi }}_{D}+{{\varPhi }}_{R} \text{，}$ (5)

 $\underset{R\to \mathrm{\infty }}{\mathrm{lim}}\nabla {{\varPhi }}_{D\left(R\right)}=0 \text{，} {R}=\sqrt{{x}^{2}+{y}^{2}+{z}^{2}} \text{，}$ (6)

 $\frac{\partial {{\varPhi }}_{D}}{\partial n}{|}_{{S}_{0}}=-\frac{\partial {{\varPhi }}_{I}}{\partial n}{|}_{{S}_{0}} \text{，} \frac{\partial {{\varPhi }}_{R}}{\partial n}{|}_{{S}_{0}}=\sum _{j=1}^{6}\dot{{x}_{0j}}{n}_{j} \text{。}$ (7)

 $\frac{\partial {\varPhi }}{\partial n}{|}_{{S}_{0}}={V}_{n}\left(x,y,z,0\right)=\sum _{j=1}^{6}\dot{{x}_{0j}}\left(0\right){n}_{j}\text{，}$ (8)

 ${\varPhi }\left({P},0\right)={f}\left({P}\right) ,\text{且} \frac{\partial {\varPhi }\left({P},0\right)}{\partial \mathrm{t}}={f}{\text{′}}\left(P\right)=-gZ\left(P,0\right) \text{。}$ (9)

 ${{\varPhi }}_{R}\left(P,t\right)={{\varPhi }}_{RI}\left({P},{t}\right)+{{\varPhi }}_{RM}({P},{t}) \text{，}$ (10)

 ${F}_{i}^{RI}\left(t\right)=-\rho {\iint }_{{S}_{0}}^{}\frac{\partial {{\varPhi }}_{RI}\left({P},{t}\right)}{\partial t}{n}_{i}{\rm{d}}S \text{，}$ (11)

 ${F}_{i}^{RM}\left(t\right)=-\rho {\iint }_{{S}_{0}}^{}\frac{\partial {{\varPhi }}_{RM}\left(\mathrm{P},\mathrm{t}\right)}{\partial t}{n}_{i}{\rm{d}}S \text{，}$ (12)

 ${F}_{i}^{W}\left(t\right)=-\rho {\iint }_{{S}_{0}}^{}\frac{\partial }{\partial t}[{{\varPhi }}_{I}\left({P},{t}\right)+{{\varPhi }}_{D}\left({P},{t}\right)]{n}_{i}{\rm{d}}S \text{，}$ (13)

 ${F}_{i}^{S}\left(t\right)=-{{\boldsymbol{C}}}_{ij}\cdot {x}_{0j}\left(t\right) \text{，}$ (14)

 ${\sum }_{j=1}^{6}{{\boldsymbol{m}}}_{ij}\ddot{{x}_{ij}}\left(t\right)={F}_{i}^{RI}+{F}_{i}^{RM}+{F}_{i}^{W}+{F}_{i}^{S},(i=\mathrm{1,2},\cdots ,6) \text{。}$ (15)

2 大型邮轮计算及试验参数

 图 1 大型邮轮船体及自由面网格 Fig. 1 Large cruise ship hull and free surface mesh

3 邮轮计算与试验结果对比 3.1 规则波中邮轮运动响应

 图 2 迎浪纵摇运动RAO Fig. 2 Pitch RAO in head wave

 图 3 迎浪垂荡运动RAO Fig. 3 Heave RAO in head wave

 图 4 横浪横摇运动RAO Fig. 4 Roll RAO in beam wave

 图 5 横浪垂荡运动RAO Fig. 5 Heave RAO in beam wave

3.2 不规则波中邮轮运动响应

 图 6 迎浪邮轮运动响应有义双幅值（4级海况） Fig. 6 Double significant amplitude of cruise motion response in head wave (sea state 4)

 图 7 迎浪邮轮运动响应有义双幅值（6级海况） Fig. 7 Double significant amplitude of cruise motion response in head wave (sea state 6)

 图 8 横浪邮轮运动响应有义双幅值（4级海况） Fig. 8 Double significant amplitude of cruise motion response in beam wave (sea state 4)

 图 9 横浪邮轮运动响应有义双幅值（6级海况） Fig. 9 Double significant amplitude of cruise motion response in beam wave (sea state 6)

4 邮轮耐波性能评估分析 4.1 不同浪向下邮轮的耐波性能

 图 10 邮轮垂向加速度 Fig. 10 Vertical acceleration of cruise ship

 图 11 邮轮横向加速度 Fig. 11 Lateral acceleration of cruise ship

 图 12 邮轮横摇运动 Fig. 12 Roll motion of cruise ship

 图 13 邮轮纵摇运动 Fig. 13 Pitch motion of cruise ship

4.2 不同航速下邮轮的耐波性能

5级海况下，大型邮轮在最大航速22 kn时的运动响应如图14所示。6级海况下，浪向30°时，大型邮轮在不同航速的运动响应如图15所示。

 图 14 邮轮运动响应（5级海况，航速22 kn） Fig. 14 Motion response of cruise ship (sea state 5, 22 kn )

 图 15 邮轮运动响应（6级海况，浪向30°） Fig. 15 Motion response of cruise ship (sea state 6, wave direction 30°)

5 结　语

1） 由邮轮模型试验与数值计算结果对比分析可知，应用基于三维时域势流理论以及Rankine面元法开发的水动力软件SESAM-Wasim对邮轮进行数值模拟可得到比较准确可靠的结果。

2） 邮轮以设计航速18 kn运行时，在5级及以下海况，其耐波性能完全满足安全营运与舒适性标准，可在任意浪向下航行；当海况条件达到6级时，邮轮应避免在浪向30°航行；当海况条件达到7级时，邮轮应避免在浪向30°及90°航行。

3） 当海况条件未超过5级时，大型邮轮在最大航速22 kn以内航行，可忽略海浪影响，耐波性满足安全营运与舒适性标准。当邮轮在更高海况下航行时，可通过降低航速的方法使其耐波性符合标准。在6级海况下，大型邮轮航速降至15 kn即可。

 [1] CAO Yu, YU Bao Jun, WANG Jian Fang. Modeling the seakeeping performance of luxury cruise ships[J]. Journal of Marine Science & Application, 2010, 9(3): 292-300. [2] 李辉, 王宇博, 许会芬, 等. 豪华邮轮波浪载荷预报方法[J]. 船舶工程, 2018, 40(S1): 71-74+145. [3] 章新智, 王驰明, 郭昂. 豪华邮轮耐波性衡准分析[J]. 船舶标准化工程师, 2014, 47(4): 13-17. DOI:10.3969/j.issn.1005-7560.2014.04.004 [4] 马网扣, 王露, 董良志, 等. SOLAS 2020破舱稳性对大型邮轮主尺度规划的影响[J]. 中国造船, 2019, 60(3): 46-54. [5] DALLINGA R P, BOS J E. Cruise ship seakeeping and passenger comfort[J]. Cruise Ship Seakeeping & Passenger Comfort Tno Repository, 2010. [6] JAE-H K, YONGHWAN K. Study on assessment of passenger comfort and its improvement by using motion stabilization for a cruise ship[C]//International Conference on Maritime Technology. 2012 [7] 赵连恩, 谢永和. 高性能船舶原理与设计[M]. 北京: 国防工业出版社, 2009. [8] 朱仁传, 缪国平. 船舶在波浪上的运动理论[M]. 上海: 上海交通大学出版社, 2019.