﻿ 基于AHP和S型函数的潜艇水上不沉性评估方法
 舰船科学技术  2022, Vol. 44 Issue (1): 23-26    DOI: 10.3404/j.issn.1672-7649.2022.01.005 PDF

Evaluation method of submarine surface insinkability base on AHP and sigmoid function
GUO Feng, ZHOU Tao, LIU Rui-jie, LU Qing-liang
No.92578 Unit of PLA, Beijing 100161, China
Abstract: Surface insinkability is the emphases of submarine design and proofread. Current method of submarine surface insinkability evaluation is just in allusion to subentry index, no synthesis. Consequently , the design level of submarine surface insinkability is inenarrable and inestimable. This text analysed the subentry index of surface insinkability, and established a evaluation technique of submarine surface insinkability base on AHP and Sigmoid function.
Key words: submarine     surface insinkability     buoyancy     stability
0 引　言

1 评估体系构建

 图 1 潜艇水上不沉性评估体系 Fig. 1 The system of Submarine surface insinkability
2 评估衡准建立

3 评估方法研究 3.1 评估流程

 图 2 潜艇水上不沉性评估流程图 Fig. 2 The flow chart of submarine surface insinkability
3.2 评估模型

 $P = \sum\limits_{x = 1}^3 {{p_x} \cdot {{\text{i}}_x}}，$ (1)

 ${P_1} = \sum\limits_{y = 1}^3 {{P_{1y}}} \cdot {{\text{i}}_{1y}} 。$ (2)

 ${P_2} = \sum\limits_{{\text{z}} = 1}^2 {{P_2}_z} \cdot {{\text{i}}_{2z}}，$ (3)

 $P = \left( {\sum\limits_{y = 1}^3 {{P_{1y}}} \cdot {{\text{i}}_{1y}}} \right) \cdot {i_{\text{1}}} + \left( {\sum\limits_{z = 1}^2 {{P_2}_z} \cdot {{\text{i}}_{2z}}} \right) \cdot {i_{\text{2}}} + {P_{\text{3}}} \cdot {i_{\text{3}}}。$ (4)
3.3 评估方法

3.3.1 破损浮性量化评估方法

1）储备浮容积量化评估模型

 ${P_{11}} = \left\{ \begin{array}{*{20}{c}} \dfrac{1}{{1 + {e^{11 \times (0.3 - \overline \Delta )}}}} + 0.5，&{{\text{1}}0\% \leqslant \overline \Delta \leqslant {\text{3}}0\% } ，\\ 0 ，&\overline \Delta < 10{\text{% }} 。\end{array} \right.$ (5)

2）破损横倾角量化评估模型

 ${P_{12}} = \left\{ {\begin{array}{*{20}{c}} \dfrac{1}{{1 + {e^{8.4\left| \varphi \right|}}}} + 0.5，&{0 \leqslant \left| \varphi \right| \leqslant 15^\circ } ，\\ 0，&{\left| \varphi \right| > 15^\circ } 。\end{array}} \right.$ (6)

3）破损纵倾角量化评估模型

 ${P_{13}} = \left\{ {\begin{array}{*{20}{c}} \dfrac{1}{{1 + {e^{14\left| \theta \right|}}}} + 0.5，&{0 \leqslant \left| \theta \right| \leqslant 9^\circ } ，\\ 0，&{\left| \varphi \right| > 9^\circ } 。\end{array}} \right.$ (7)

4）破损浮性量化评估权重模型

3.3.2 破损稳性量化评估方法

1）初稳性高量化评估模型

 ${P_{21}} = \left\{ {\begin{array}{*{20}{c}} \dfrac{1}{{1 + {e^{8.8 \times }}^{(0.4 - \overline {GM} )}}} + 0.5，&0.15 \leqslant \overline {GM} \leqslant 0.4，\\ 0，&{\overline {GM} < 0.15} 。\end{array}} \right.$ (8)

2）抗风级量化评估模型

3）破损稳性量化评估权重模型

3.3.3 破舱制量化评估方法

3.3.4 水上不沉性量化评估方法

4 案例分析

5 结　语

 [1] 马运义, 许建. 现代潜艇设计原理与技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2012. [2] 涂俊勇, 石仲堃. AHP在潜艇概念设计综合评估中的应用[J]. 中国造船, 2004, 45(S): 52-57. TU Jun-yong, SHI Zhong-kun. AHP’s application to integrated evaluation of submarine summarily design[J]. China Shipbuilding, 2004, 45(S): 52-57. [3] 苏玉明, 庞永杰. 潜艇原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2005. [4] 众勰. 潜艇基础知识[M]. 北京: 国防工业出版社, 1985.