﻿ H型尾操纵面模型在潜艇超越运动中的性能分析
 舰船科学技术  2022, Vol. 44 Issue (1): 17-22    DOI: 10.3404/j.issn.1672-7649.2022.01.004 PDF
H型尾操纵面模型在潜艇超越运动中的性能分析

1. School of Civil Engineering and Transportation , South China University of Technology, Guangzhou 510640, China;
2. Guangzhou Shunhai Shipyards Ltd., Guangzhou 511440, China
Abstract: Overlapping mesh method and volumetric force model were used to reduce roll angle of the cruciform stern control plane Suboff-1 model in the overtaking motion,by replace the cruciform stern control plane with an H-shaped stern control plane.By monitoring and analyzing the time to reach the pre-determined yaw angle, the completion time of overtaking motion, and the maximum heel angle of different stern control planes, the advantages and disadvantages of the improved H-type stern control plane compared with the cruciform stern control plane in terms of rudder performance and performance of rolling reduction were obtained. Numerical simulations of overtaking motion were performed on five groups of simple H-shaped stern control plane to obtain the optimal solution for the wing width. The results show that compared with the cruciform stern control plane model, H-shaped stern control plane model has a small loss in rudder performance.But the performance of rolling reduction was substantial increased. The optimal wing width is 50% of the parallel hull diameter.Changing the form of the stern control plane only changes the part of the tail vortex field, which has little effect on the concealment performance of the submarine.
Key words: Suboff-1     stern control plane     overtaking motion     heel reduction
0 引　言

H型尾操纵面和十字型尾操纵面结构相似，较X型尾操纵面控制简单，而针对H型尾操纵面这一尾舵形式的研究却很少。本文通过有限体积方法对十字型尾操纵面模型和H型尾操纵面模型的超越运动进行数值模拟，对比2种不同尾操纵面形式模型在超越运动过程中的运动特性，并通过对比分析不同翼板宽度的H型尾操纵面模型在超越运动中的运动情况，获得H型尾操纵面模型矩形翼板宽度的最优解。

1 数学模型 1.1 控制方程

 $\frac{{\partial {u_i}}}{{\partial {x_i}}} = 0 ，$ (1)
 $\begin{split} \frac{\partial }{{\partial t}}(\rho {u_i}) +& \frac{\partial }{{\partial {x_j}}}(\rho {u_i}{u_j}) = - \frac{{\partial p}}{{\partial {x_i}}} + \frac{\partial }{{\partial {x_j}}}\Biggr({\mu _0}\Biggr(\frac{{\partial {u_i}}}{{\partial {x_j}}} + \frac{{\partial {u_j}}}{{\partial {x_i}}}\Biggr) - \\ & \frac{2}{3}{\mu _0} \cdot \frac{{\partial {u_l}}}{{\partial {x_l}}}{\delta _{ij}}\Biggr) + \frac{\partial }{{\partial {x_j}}}( - \rho \overline {u_i^,u_j^,} ) + \rho {f_i} 。\end{split}$ (2)

1.2 湍流补充方程

 $\frac{\partial }{{\partial t}}(\rho k) + \frac{\partial }{{\partial {x_i}}}(\rho k{u_i}) = \frac{\partial }{{\partial {x_j}}}\left(\left(\mu + \frac{{{\mu _t}}}{{{\sigma _k}}}\right)\frac{{\partial k}}{{\partial {x_j}}}\right) + {G_k} - {Y_k} + {S_k}，$ (3)
 $\frac{\partial }{{\partial t}}(\rho \omega ) + \frac{\partial }{{\partial {x_i}}}(\rho \omega {u_i}) = \frac{\partial }{{\partial {x_j}}}\left(\left(\mu + \frac{{{\mu _t}}}{{{\sigma _\omega }}}\right)\frac{{\partial \omega }}{{\partial {x_j}}}\right) + {G_\omega } - {Y_\omega } + {S_\omega }。$ (4)
1.3 螺旋桨的体积力模型

 ${f_{bx}} = {A_x}{r^*}\sqrt {1 - {r^*}} {f_{b\theta }} = {A_\theta } \cdot \frac{{{r^*}\sqrt {1 - {r^*}} }}{{{r^*}(1 - r_h^,) + r_h^,}} ，$ (5)
 ${r^*} = \frac{{{r^,} - r_h^,}}{{1 - r_h^,}} r_h^, = \frac{{{R_H}}}{{{R_P}}} {r^,} = \frac{r}{{{R_P}}} ，$ (6)
 $\begin{split}&{A_x} = \frac{{105}}{8} \cdot \frac{T}{{{\text{π}} \Delta (3{R_H} + 4{R_p})({R_p} - {R_H})}}，\\ &{A_\theta } = \frac{{105}}{8} \cdot \frac{Q}{{{\text{π}} \Delta {R_P}(3{R_H} + 4{R_P})({R_P} - {R_H})}}\end{split}。$ (7)

2 计算模型

2.1 尾操纵面模型设置

 图 1 不同尾操纵面结构形式 Fig. 1 Different tail control surface structures

 图 2 不同尾操纵面形式的水平舵结构 Fig. 2 Horizontal rudder structures with different stern control plane
2.2 尾操纵面翼板变参数

2.3 方向舵控制

 $\theta_{\delta}= \left\{\begin{array}{c} -60^{\circ} / {\rm{s}}，\varphi \leqslant 10^{\circ} \cup \delta \geqslant-20^{\circ} ，\\ 0^{\circ} / {\rm{s}}，|\delta| \geqslant 20^{\circ} ，\\ 60^{\circ} / {\rm{s}}，\text { others }。\end{array}\right.$

3 网格划分

 图 3 模型整体网格划分 Fig. 3 Global mesh generation of the model

 图 4 首部边界层网格划分 Fig. 4 Meshing of head boundary layer

3.1 网格收敛性分析

3.2 艇体阻力预报

3.3 自航点预报

 图 5 自航点推阻力预报 Fig. 5 Prediction of self propelled point thrust resistance
4 计算结果及分析

4.1 十字型操纵面与H型操纵面操纵效果对比

 图 6 水平超越运动首摇角时历曲线 Fig. 6 Time history curve of yaw angle of horizontal overrunning motion

 图 7 水平超越运动横摇角时历曲线 Fig. 7 Time history curve of roll angle in horizontal transcendental motion

4.2 翼板宽度差异对H舵响应的影响

H型尾操纵面较十字型尾操纵面在潜艇超越运动中有明显减摇效果的前提下，对5组H型尾操纵面模型在超越运动中的最大横摇角进行计算。通过曲线拟合，得到5组H型尾操纵面模型在超越运动过程中的最大横摇角，如表6所示。

4.3 涡场分析

 图 8 艇首及控制台的涡场分布 Fig. 8 Vortex field distribution of bow and console

 图 9 尾操纵面涡量场 Fig. 9 Vortex field of tail control surface

5 结　语

1）H型尾操纵面作为一种控制简单的舵面形式，在超越运动过程中较十字型尾操纵面有良好的减摇性能，当设计翼宽为潜艇平行中体直径的20%时，最大横摇角度减少32.7%；

2）由十字型尾操纵面改进为H型尾操纵面形式时将造成潜艇应舵性能的损失，达到预定首摇角时间将增大，但对潜艇的跟从性能影响较小；

3）对于本文设计的矩形面板型H型操纵面翼板形式，通过对5组不同翼宽的减摇性能、应舵性能和跟从性能综合分析，翼板宽度的最优解为潜艇平行中体直径的50%；

4）2种尾操纵面形式的改变对艇身流噪声产生的重要部位影响较小，而H型尾操纵面较十字型尾操纵面在螺旋桨盘面前产生大量尾涡。

 [1] 王京齐, 施生达. 现代潜艇尾操纵面的发展状况[J]. 舰船科学技术, 2007, 29(1): 33-40. [2] 柏铁朝, 许建, 陈炫树, 等. 基于CFD的潜艇操纵性数值仿真发展综述[J]. 舰船科学技术, 2020, 42(5): 1-7. DOI:10.3404/j.issn.1672-7649.2020.05.001 [3] 张风丽. 潜艇操纵性水动力系数预报方法研究[J]. 中国水运, 2018, 18(1): 13-15. [4] 黄晨冉. 基于重叠网格的水下潜器操纵运动直接模拟[D]. 武汉: 武汉理工大学, 2018. [5] 陈纪军, 潘子英, 彭超, 等. 十字形和X形艉舵航行体的水动力特性对比[J]. 中国舰船研究, 2020, 15(2): 8-16. [6] 林俊兴, 戴余良, 张涛. X形舵和十字形舵操纵力等效关系的研究[J]. 舰船科学技术, 2004, 26(5): 5-13. [7] 曾广会, 朱军, 黄昆仑. 潜艇操纵面几何参数敏感性计算研究[J]. 舰船科学技术, 2009, 30(2): 44-48. DOI:10.3404/j.issn.1672-7649.2009.02.006 [8] 王庆云, 庞永杰, 李伟坡, 等. 系列舵翼潜艇水动力系数数值计算及试验研究[J]. 舰船科学技术, 2015, 37(11): 21-26. DOI:10.3404/j.issn.1672-7649.2015.11.004 [9] CLAKE D K, HASSAN H A, SALAS M D. Euler calculations for multielement airfoils using cartesian grids[J]. Aiaa Journal, 2012, 24(3): 353-358. [10] 汪小翔, 廉滋鼎, 许靖峰, 等. SUBOFF标模水下阻力试验方法[C]//第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集. 上海: 《水动力学研究与进展》出版社, 2017.