﻿ 舰船测风传感器安装位置数值仿真
 舰船科学技术  2021, Vol. 43 Issue (12): 105-110    DOI: 10.3404/j.issn.1672-7649.2021.12.019 PDF

1. 海军装备部驻上海地区第八代表室，上海 200011;
2. 中国船舶集团有限公司第七〇八研究所，上海 200011;
3. 哈尔滨工程大学，黑龙江 哈尔滨 150001

Numerical investigation on installation location of shipborne anemometry
YANG Wei-guo1, ZHU Xin2, ZHANG Bao-juan2, HE Zheng3
1. The Eighth Representative Office of Naval Equipment Department in Shanghai, Shanghai 200011, China;
2. The 708 Research Institute of CSSC, Shanghai 200011, China;
3. Harbin Engineering University, Harbin 150001, China
Abstract: The difference in the installation position of the shipborne anemometry will have a certain degree of influence on its measurement accuracy, so it is of great significance to determine the reasonable installation position of the shipborne anemometry. Analysis common shipborne anemometry location layout schemes, based on CFD theory, select the standard k-ε turbulence model, through Fluent software, analyze the flow field characteristics around the LHA-1 amphibious assault ship under different working conditions, and determine the installation position of shipborne anemometry. The research results show that the flow field around the ship is greatly affected by the hull structure. On the right side of the bow of the ship and the center of the island-style superstructure, the disturbance to the shipborne anemometry is low and is more suitable for installation. This research provides a reference for the formulation of wind measurement programs for large ships.
Key words: CFD     flow field characteristics     large ships     wind location
0 引　言

1 数值计算原理与方法

 $\left\{ {\begin{array}{*{20}{l}} {\nabla \cdot V = 0}, \\ {\dfrac{{\partial (\rho V)}}{{\partial t}} + \nabla \cdot (\rho VV) = \rho f - \nabla p + \nabla \cdot (2\mu S)}, \end{array}} \right.$ (1)
 $\frac{{\partial (\rho \varepsilon )}}{{\partial t}} + \frac{{\partial \left( {\rho \varepsilon {u_i}} \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {\left( {\mu + \frac{{{\mu _t}}}{{{\sigma _\varepsilon }}}} \right)\frac{{\partial \varepsilon }}{{\partial {x_j}}}} \right] + {C_{\varepsilon 1}}\frac{\varepsilon }{k}{G_k} - {C_{\varepsilon 2}}\rho \frac{{{\varepsilon ^2}}}{k},$ (2)
 $\frac{{\partial (\rho k)}}{{\partial t}} + \frac{{\partial \left( {\rho k{u_i}} \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {\left( {\mu + \frac{{{\mu _t}}}{{{\sigma _k}}}} \right)\frac{{\partial k}}{{\partial {x_j}}}} \right] + {G_k} - \rho \varepsilon\text{。}$ (3)
2 物理模型

 图 1 LHA-1 两栖攻击舰物理模型 Fig. 1 LHA-1 Amphibious assault ship physical model

 图 2 LHA-1 起降点具体分布情况 Fig. 2 LHA-1 Specific distribution of take-off and landing points
3 网格无关性及计算模型合理性验证

 图 3 不同网格数下的 m 点Y轴方向速度分布 Fig. 3 Velocity distribution of m point in the Y axis direction under different grid numbers

m点所在的沿船宽方向且长度与甲板宽度相等的直线为特征线，对930万网格的仿真算例做进一步分析。对线上各点沿Y轴方向的分速度与文献[10]中的实验数据进行对比，如图4所示。

 图 4 Y 轴方向的计算速度和实验速度分布图 Fig. 4 Calculated velocity and experimental velocity distribution diagram in the Y-axis direction

 图 5 船体周围网格 Fig. 5 Grid around the hull
4 舰船测风位置布置方案研究 4.1 舰船常见的测风传感器安装位置

1）舰船甲板的两侧。舰船的结构会对飞行甲板的两侧产生扰流的影响，并且在某些风向角下甲板两侧的拐角处会产生非常复杂的涡旋，所以在确定测风传感器位置时要考虑这些因素。

2）舰船船首一侧。某些舰船会在船首安放测风支架，然后将测风传感器安装在测风支架远离舰船的一侧。

3）船尾。某些舰船的船尾比较空阔或者其上方为上层建筑，这种情况下可以将测风传感器安装在船尾。

4）上层建筑上方。由于舰岛上方有一定的高度优势，不易受到扰流的影响，所以可以将测风传感器安装在此处。

 图 6 舰船常见测风设备安装位置分布 Fig. 6 Distribution of installation locations of common wind measuring equipment on ships
4.2 舰船测风布置的方案分析

 图 7 Z=0 截面，入口风速 5 m/s Fig. 7 Z=0 section, inlet wind speed 5 m/s

 图 8 Z=0 截面，入口风速 20.6 m/s Fig. 8 Z=0 section, inlet wind speed 20.6 m/s

1）舰船甲板两侧流场分析

 图 9 0°风向角时甲板高度截面的速度云图和流线图 Fig. 9 Velocity cloud diagram and streamline diagram of deck height section at 0° wind direction

 图 10 30°风向角时甲板高度截面的速度云图和流线图 Fig. 10 Velocity cloud diagram and streamline diagram of deck height section at 30° wind direction

 图 11 90°风向角时甲板高度截面的速度云图和流线图 Fig. 11 Velocity cloud diagram and streamline diagram of deck height section at 90° wind direction

 图 12 120°风向角时甲板高度截面的速度云图和流线图 Fig. 12 Velocity cloud diagram and streamline diagram of deck height section at 120° wind direction

2）船首船尾周围流场分析

 图 13 0°风向角时 Z=0 截面的速度流线图 Fig. 13 0° wind direction, Z=0 section velocity streamline diagram

 图 14 0°风向角时X=−164截面的速度流线图 Fig. 14 0° wind direction, X=−164 section velocity streamline diagram

3）岛式上层建筑附近流场分析

 图 15 0°风向角时 LHA-1 舰船表面流线分布 Fig. 15 0° wind direction ,streamline distribution on the surface of the LHA-1 ship

 图 16 0°风向角时 Z=−17.5 m 截面速度流线图 Fig. 16 0° wind direction, Z=−17.5 m section velocity streamline diagram

 图 17 测风点位置示意图 Fig. 17 Schematic diagram of wind measurement point location
5 结　语

1）舰船周围流场的特点受来流风向的角度变化影响很大，相比于角度变化对流场的影响，同一来流风向角度下，在一定的流速范围内，不同来流速度对于舰船周围的气流场影响非常小。

2）由于这些舰船结构的复杂性，其周围的流场会产生大量的涡旋，包括由于船首上洗气流导致的涡旋、船尾的尾流引起的涡旋，由于舰岛的上洗气流而产生的涡旋，以及在舰船甲板附近所产生的涡旋等。

3）建议在流场不易受到船体干扰的位置安装测风设备，通过分析 LHA-1 两栖攻击舰周围的流场，船首的右侧以及舰岛中心位置的流场不易受到干扰，适合安装测风传感器。

 [1] 赵永振. 大型舰船定常与非定常气流场数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2012. [2] 宋剑, 何建忠. 航空母舰在随机海况下的运动统计特性[J]. 舰船电子工程, 2011, 31(3): 67-69. DOI:10.3969/j.issn.1627-9730.2011.03.019 [3] REDDY K R, TOFFOLETTO R, JONES K R W. Numerical simulation of ship airwake[J]. Computers & Fluids, 2000, 29(4): 451-465. [4] RAJAGOPALAN R G, SCHALLER D, WADCOCK A, et al. Experimental and computational simulation of a model ship in a wind tunnel[C]// Aiaa Aerospace Sciences Meeting and Exhibit. 2013. [5] YESILEL H, EDIS F O. Ship airwake analysis by CFD Methods[J]. 2007, 936(1): 674−677. [6] FORREST. S, OWEN, I. An investigation of ship airwakes using detached-eddy simulation[J]. Computers and Fluids, 2010, 39: 656-673. DOI:10.1016/j.compfluid.2009.11.002 [7] 刘连吉. 对现用海洋水文气象要素调查规范的改进意见[J]. 海洋技术, 1982(02): 70-73. [8] 郜冶, 谭大力, 李海旭, 等. 舰载风速仪测量误差与安装位置的关系研究[J]. 哈尔滨工程大学学报, 2014, 10: 1195-1200. DOI:10.3969/j.issn.1006-7043.201306077 [9] 洪伟宏, 姜治芳, 王涛. 上层建筑形式及布局对舰船空气流场的影响[J]. 中国舰船研究, 2009, 4(2): 53-58. DOI:10.3969/j.issn.1673-3185.2009.02.012 [10] 王金玲. 舰船空气尾流场特性数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. [11] POLSKY S A, BRUNER C W. Time - accurate computational simulations of an LHA ship airwake[C]//18th Applied Aerodynamics Conference Denver, 2000: 288−297.