﻿ 铝合金加筋板焊接温度场和残余应力数值模拟
 舰船科学技术  2021, Vol. 43 Issue (12): 71-75    DOI: 10.3404/j.issn.1672-7649.2021.12.013 PDF

Numerical investigation on welding temperature field and residual stresses of stiffened aluminum plates
LI Chen-feng, JIN Teng-long, LIU De-huai, ZHANG Yi-fan, LIU tao
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: In order to obtain the temperature field and structural response of aluminum alloy fillet-joint during the welding process, the numerical simulation of fillet welding of 5083AL stiffened plates was carried out based on the sequential coupling method, in which the double ellipsoid heat source and the birth and death element method was adopted to simulate the MIG welding heat input and the solder filling respectively. The adopted numerical method would be useful to simulate the MIG welding process of aluminum alloy accurately. The numerical results reflect the temperature variation characteristics of aluminum alloy structure during fillet welding. The results of residual stresses show that the maximum welding residual stress at the weld is equivalent to the material yield limit, and the peak values of welding residual stress components under different restraint condition, have little difference and the distribution of residual stress along the weld center and plate center line are basically consistent.
Key words: aluminum alloy     welding simulation     heat source model     temperature field     residual stress
0 引　言

1 焊接数值模拟方法与建模 1.1 数值模拟方法与流程

 图 1 数值模拟流程图 Fig. 1 Numerical simulation process
1.2 热源模型

 图 2 双椭球热源模型 Fig. 2 Double ellipsoidal heat source model

 ${q_1}\left( {x,y,x} \right) = \frac{{6\sqrt 3 {f_1}\eta UI}}{{abc_1\text{π} \sqrt {\text{π}} }}\exp \left( { - {{\frac{{3x}}{{c_1^2}}}^2} - {{\frac{{3y}}{{{b^2}}}}^2} - {{\frac{{3z}}{{{a^2}}}}^2}} \right),x \geqslant 0 。$ (1)

 ${q_2}\left( {x,y,x} \right) = \frac{{6\sqrt 3 {f_2}\eta UI}}{{{a}bc_2\text{π} \sqrt {\text{π}} }}\exp \left( { - {{\frac{{3x}}{{c_2^2}}}^2} - {{\frac{{3y}}{{{b^2}}}}^2} - {{\frac{{3z}}{{{a^2}}}}^2}} \right),x < 0。$ (2)

1.3 铝合金加筋板模型

 图 3 铝合金加筋板有限元模型 Fig. 3 Finite element model of stiffened aluminum plate

2 焊接温度场数值模拟结果分析

 图 4 角接接头温度场云图 Fig. 4 Nephogram of temperature field of fillet-welded joint

 图 5 焊接接头温度测点 Fig. 5 Temperature measuring points of welding joint

 图 6 测点温度时历曲线 Fig. 6 Temperature vs. time curve of measuring points
3 焊接残余应力数值模拟结果分析

 图 7 角接接头的残余应力分量分布云图 Fig. 7 Nephogram of residual stress component distribution of fillet-welded joint

 图 8 角接接头沿路径的纵向残余应力曲线 Fig. 8 Longitudinal residual stress curve of the fillet-welded joint along the path

4 结　语

1）当热源作用焊接区域时，温度迅速升高，随后随时间迅速下降，温度的下降速率随时间不断减小，而焊接接头各部位的温度峰值不仅与热源参数有关，同时也与距焊缝距离有关；

2）角接焊纵向残余应力主要集中在角焊缝及附近区域，在焊缝中心位置处达到峰值，应力水平与材料屈服限接近；

3）不同约束方式下的焊接残余应力分量的峰值差异很小，沿焊缝中心和板中线的残余应力曲线也基本一致，但是在板缘处，三点约束还是使得加筋板的残余应力分布产生不均匀、不对称现象。

 [1] HAZARI H R, BALUBAI M, KUMAR D S, et al. Experimental investigation of TIG welding on AA 6082 and AA 8011[J]. Materials Today:Proceedings, 2019, 19(2): 818-822. [2] MESEGUER-VALDENEBRO J L, MARTINEZ-CONESA E, PORTOLES A. Numerical-experimental validation of the welding thermal cycle carried out with the MIG welding process on a 6063-T5 aluminium tubular profile[J]. Thermal Science, 2019, 23(6A): 3639-3650. [3] ASADI P, ALIMOHAMMADI S, KOHANTORABI O, et al. Numerical investigation on the effect of welding speed and heat input on the residual stress of multi-pass TIG welded stainless steel pipe[J]. Journal of Engineering Manufacture, 2021, 235(6-7): 1007-1021. DOI:10.1177/0954405420981335 [4] Lu Y, Zhu S, Zhao Z, et al. Numerical simulation of residual stresses in aluminum alloy welded joints[J]. Journal of Manufacturing Processes, 2020, 50: 380-393. DOI:10.1016/j.jmapro.2019.12.056 [5] 张鹏飞, 卢嘉玮, 张兆年, 等. 6061-T6铝合金构件焊接残余应力分布[J]. 兰州交通大学学报, 2021, 40(30): 15-19. [6] 胡云瑞, 李鸣申, 王留芳, 等. 快速冷却对6005A铝合金多道次MIG焊接残余应力的影响[J/OL]. 热加工工艺, 2022(1): 103−106 [7] Li C, Ren H, Zhu Z, et al. Numerical investigation on the ultimate strength of aluminium integrally stiffened panels subjected to uniaxial compressive load[J]. Thin-Walled Structures, 2018, 127: 221-234. DOI:10.1016/j.tws.2018.01.003 [8] Li C, Ren H, Zhu Z, et al. Influence of model extension and boundary conditions on the buckling behaviour of aluminium integrally stiffened panels under uniaxial compressive loading[J]. Ocean Engineering, 2020, 216: 108066. DOI:10.1016/j.oceaneng.2020.108066 [9] Chen Z, Li C, Han X, et al. Sensitivity analysis of the MIG welding process parameters based on response surface method[J]. Journal of Adhesion Science and Technology, 2020, 10: 1-20. [10] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305. DOI:10.1007/BF02667333 [11] Chen B Q, HASHEMZADEH M, SOARES C G. Numerical and experimental studies on temperature and distortion patterns in butt-welded plates[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(5-8): 1121-1131. DOI:10.1007/s00170-014-5740-8