﻿ 基于多种组合算法的船附体结构设计优化
 舰船科学技术  2021, Vol. 43 Issue (12): 65-70    DOI: 10.3404/j.issn.1672-7649.2021.12.012 PDF

Design optimization of ship attachment structure based on multiple combined algorithms
ZHANG Bei, GAO Zhi-wang, WANG Zhi-dong, LING Hong-jie, ZHANG Dai-yu
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: In order to reduce the resistance of the ship and improve the speed and seakeeping of the ship, this paper takes the DDG1000 destroyer with bulbous nose as the original ship type to study the effect of adding stern wave plates, fins and hydrofoils on the hull performance. First of all, the original model is added with a wake board, and full-parameter modeling is performed under the caeses. software platform, which is optimized based on the combination optimization algorithm strategy. This paper sets up two sets of combined optimization schemes. After comparison, it is found that the model obtained by the sobol algorithm and the NSGA-II combined optimization scheme is more superior. Adding the optimized model of the tail pressure wave board, at 2.02 m/s and 1.77 m/s speed, the resistance of the optimized model is reduced by 2.5%, which proves that the tail pressure wave board has drag reduction characteristics. Then the hull optimized by adding the stern wave plate is used as the initial model, fins and hydrofoils are added, and multi-dimensional parameter optimization is performed based on the combined algorithm strategy. After numerical calculations, it is found that the fins and hydrofoils do not have the effect of drag reduction, but at a certain speed, the fins and hydrofoils can suppress wave making, thereby reducing residual drag. Finally, under regular wave conditions, a numerical simulation was performed and it was found that after installing the tail pressure wave plate, fin and hydrofoil appendage, the wave resistance increased. When L exceeds 0.9, the wave resistance increase is less than the optimized hull after installing the appendage. Heave, pitch and seakeeping have been improved to varying degrees.
Key words: wake board     hydrofoil     fin     combined optimization algorithm     drag and roll reduction
0 引　言

1 原始船型及其水动力性能 1.1 原始船体

 图 1 原始船体模型 Fig. 1 The original hull model

1.2 计算模型建立

 图 2 计算模型及坐标系 Fig. 2 Calculation model and coordinate system

 图 3 模型网格划分 Fig. 3 model meshing

2 尾压浪板对船体阻力影响 2.1 尾压浪板的全参数化建模

1） 编写Feature功能程序，生成控制点、线以及驱动特征参数；

2） 利用软件内置的曲面生成器，关联驱动变量及驱动特征；

3） 通过软件内置的曲面生成器，通过对UV度及角度容差的调节，生成光顺曲面。

 图 4 添加尾压浪板的初始模型 Fig. 4 The initial model of adding the tail pressure wave board
2.2 优化方案选择

caeses 软件内置了多种可以调用的单目标和多目标优化算法，其中sobol算法[8]可以实现对整个变量空间的覆盖，批量生成变量的正交组合模型。Tsearch算法[9]在sobol算法的基础上，增加对变量周围搜索寻优的功能。NSGA-II优化算法是一种基于种群选择、杂交、遗传、变异的随机搜索算法[10]

1）设计变量

2）目标函数

3）约束条件

2.3 优化结果分析

1）组合优化方案对比

2）设计变量结果分析

3）船体阻力及自由液面波形对比

 图 5 添加尾压浪板前后自由液面波形图对比 Fig. 5 Comparison of free liquid surface waveform before and after adding tail pressure wave board
3 减摇鳍与水翼对船体阻力影响 3.1 减摇鳍与水翼的参数化建模

 图 6 添加水翼和侧鳍的初始模型 Fig. 6 Initial model with hydrofoil and side feed added
3.2 组合优化

1）优化目标

2）约束条件

3）设计变量

3.3 优化结果分析

1) 设计变量结果分析

2) 优化前后阻力对比

4 规则波下船体的水动力性能

 图 7 规则波条件下安装附体前后阻力对比 Fig. 7 Comparison of resistance before and after installation of appendages under regular wave conditions

 图 8 规则波条件下安装附体前后升沉与纵摇对比 Fig. 8 Heave and pitch alignment before and after the attachment is installed under regular wave conditions

 图 9 原始船型自由液面波形图 Fig. 9 The waveform of the free surface of the original ship

 图 10 添加尾压浪板后自由液面波形图 Fig. 10 Waveform of free liquid surface after adding tail pressure wave plate

 图 11 添加尾压浪板、水翼与鳍后自由液面波形图 Fig. 11 waveform of free liquid surface after adding tail pressure wave board, hydrofoil and fin
5 结　语

 [1] 李创兰. 基于动网格的船舶及其附体阻力预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. [2] 刘英和, 王桂云, 王侨, 等. 尾压浪板对穿浪双体船耐波性影响[J]. 中国水运(下半月), 2016, 16(2): 12-13+163. [3] 蒋一, 孙寒冰, 邹劲, 等. 变角度尾压浪板对断级滑行艇阻力性能的影响[J]. 上海交通大学学报, 2017, 51(3): 320-325. [4] NAITO, S, HIGAKI, S, KATO, J, et al. Reduction of added resistance and thrust generation by using a bow wing in waves[J]. Journal of KSNAJ, 2011, 235: 79–89. [5] ULYSSES, A. P. Study of the sea behavior of a marine-class ship equipped with anti-pitching bow fins [R]. DTMB Report 1084, 1958 [6] 朱航, 游贵标, 孙义平, 等. ZHU Hang, YOU Gui-biao, SUN Yi-ping, ZHANG Chunlong, ZHANG Xian-yu-[J].造船技术, 2015(4): [7] 刘强, 张恒, 彭必业, 等. 改进Sobol’方法在船型优化模型中的应用[J]. 船舶工程, 2020, 42(2): 44-48+69. [8] LI Shaodong, DU Zhijiang, YU Hongjian, et al. A Robust multi-circle detector based on horizontal and vertical Search analysis fitting with tangent direction[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(4). [9] GOLDBERG D E. Genetic algorithms in search optimizaion and machine learning [M]. MA: Addison-Wesley Publishing Company Inc, 1989.